Browsing by Author "Namutebi, Agnes"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemChanges in Sensory and Quality Characteristics of S. Aethiopicum (Shum) and A. Lividus (Linn) Leafy Vegetables along the Supply Chain(Science and Education Publishing, 2018-05) Apolot, Mary Gorret; Ssozi, Joshua; Namutebi, Agnes; Masanza, Michael; Kizito, Elizabeth B.; Rees, Deborah; Hedwig, AchamChanges in sensory attributes of vegetables over time under different conditions have been reported, however, little has been done regarding profiling and assessing changes in sensory attributes of raw leafy vegetables particularly Solanum aethiopicum (S.) and Amaranthus lividus (L.). This study therefore fills an important knowledge gap of profiling sensory attributes and assessing changes in color, texture and appearance of S.aethiopicum and A.lividus leafy vegetables over time after harvest. A complete randomized design in a 3 ×3 factorial arrangement (each vegetable sample was subjected to three treatments (Time of the day) and three replicates) and data was collected by use of quantitative descriptive sensory analysis. Descriptive data was entered into Microsoft excel spread sheets, averages computed and graphs generated. The data was further subjected to ANOVA and a least significant difference test was used to compare means of samples for all attributes at 95% confidence interval. Correlation analysis using Statistical Package for Social Scientients’ (SPSS version 16.0) was also performed to assess relationship between sensory attributes. Descriptive sensory analysis results showed that all 9:00hrs samples were rated highly for each attribute compared to the 12:00hrs and 15:00hrs samples. ANOVA results for S. aethiopicum showed statistical significant (p<0.05) difference for all the attributes except for light green color of leaf stalk (p<0.05) whereas that for A. lividus showed significant differences for moist appearance, well spread appearance, smoothness and overall quality. Correlation results showed significant positive relationship (p<0.05) among attributes. This study observed that sensory attributes of leafy vegetables change with time after harvest andtraders are therefore encouraged to adopt local cooling systems to help preserve the sensory attributes of vegetables.
- ItemEffect of Different Processing Conditions on Proximate and Bioactive Contents of Solanum aethiopicum (Shum) Powders, and Acceptability for Cottage Scale Production(Science and Education Publishing, 2018-04) Akanyijuka, Sam; Acham, Hedwig; Tumuhimbise, Gaston; Namutebi, Agnes; Masanza, Michael; Jagwe, John N.; Kasharu, Apolo; Kizito, Elizabeth B.; Rees, DeborahThe purpose of this study was to investigate the effects of different processing conditions for production of dried Solanum aethiopicum (S.) leaf powder by comparing solar drying and cabinet drying processing techniques. Four (4) pre-treatments were done on S. aethiopicum leaves to inhibit enzyme action and prolong storage life. Treatments included dipping in; 10% saline solution, 10% vinegar solution, water (as the control), and steam blanching; done for both whole and sliced S. aethiopicum leaves. Each of the resultant samples were dried in both solar and cabinet dryers for a period of 24 hours. The dried leaf samples were grounded into powder using a coffee grinder and subjected to different laboratory analyses including; catalase activity, moisture content, vitamin C retention capacity and phytate content analyses. The results obtained were analysed using MINITAB version 16.0 at 5% significance level. The results showed that there was a reduction in catalase activity after pre-treatment and drying from 5.0±0.0 cm3 for the fresh un-treated leaves to a range of 4.5±0.7 – 3.0±0.0 cm3 for whole solar dried; 4.5±0.7-4.0±0.0 cm3 for sliced solar dried; 4.0±0.0 - 3.0±0.0 cm3 for whole cabinet dried and 3.5±0.7-2.3±0.7 cm3 for sliced cabinet dried leaf powder. Solar dried S. aethiopicum leaf powder contained significantly high moisture content than hot air cabinet dried one (24.9±0.5 % for saline treated sliced leaves to 8.9±0.8 % for blanched sliced leaves, than hot air cabinet dried one with 9.3±0.0 % for sliced plain water treated leaves to 7.0±0.2 % for sliced vinegar treated leaves; respectively). Cabinet dried S. aethiopicum contained significantly more vitamin C content (1.1±0.2 mg for whole blanched leaves compared to 0.6±0.1 mg for sliced vinegar treated leaves) than the solar dried one (1.0±0.2 mg for sliced plain water treated leaves to 0.6±0.1 mg for sliced vinegar treated leaves). There was no significant difference in phytate content between the hot air cabinet dried and solar dried i.e. 0.7±0.1 - 0.2±0.1 mg for solar and 0.7±0.1 - 0.3±0.3 mg for cabinet dried. Solar dried S. aethiopicum powder contained significantly higher catalase than the hot air cabinet dried one (4.5±0.7 - 3.0±0.0 and 4.0±0.0 - 2.5±0.7 cm3; respectively). However, in terms of acceptability, there was high preference for saline treated leaf powder soups compared to other soups. It can be concluded that High activity of catalase, moisture retention and high loss of Vit.C occurs in the solar drier than in cabinet drier. Whole leaf saline pretreated leaf powder soup is rated high compared to other dried soups. Therefore, the best method for production of dried S. aethiopicum powder is by slicing, dipping it in plain water and drying using a cabinet dryer. Under circumstances where cabinet drying is not achievable, solar drying is recommended using whole leaf, pretreated with saline water to promote preservation and consumption of the vegetable.