Performance of an Open Source Facial Recognition System for Unique Patient Matching in a Resource-Limited Setting

Loading...
Thumbnail Image

Date

2020

Journal Title

Journal ISSN

Volume Title

Publisher

International Journal of Medical Informatics

Abstract

Background: The lack of unique patient identifiers is a challenge to patient care in developing countries. Probabilistic and deterministic matching approaches remain sub-optimal. However, affordable and scalable biometric solutions have not been rigorously evaluated in these settings. Methods: We implemented and evaluated performance of an open-source facial recognition system, OpenFace, integrated within a nationally-endorsed electronic health record system in Western Kenya. Patients were first enrolled via facial images, and later matched via the system. Accuracy of facial recognition was evaluated using Sensitivity; False Acceptance Rate (FAR); False Rejection Rate (FRR); Failure to Capture Rate (FTC) and Failure to Enroll Rate (FTE). 103 patients (mean age 37.8, 49.5% female) were enrolled. Results: The system had a sensitivity of 99.0%, FAR<1%, FRR 0.00, FTC 0.00 and FTE 0.00. Wearing spectacles did not affect performance. Conclusion: An open source facial recognition system correctly and accurately identified almost all patients during the first match.

Description

This is a research article assesses the lack of unique patient identifiers is a challenge to patient care in developing countries.

Keywords

Biometrics, Patient matching, Unique patient identifier, Facial identification

Citation

Kitayimbwa. John M. 2020 Performance of an open source facial recognition system for unique patient matching in a resource-limited setting. International Journal of Medical Informatics Vol. 141 Elsevier https://doi.org/10.1016/j.ijmedinf.2020.104180