Show simple item record

dc.contributor.authorSekulya, S.
dc.contributor.authorNandutu, A.
dc.contributor.authorNamutebi, A.
dc.contributor.authorSsozi, J.
dc.contributor.authorMasanza, Michael
dc.contributor.authorJagwe, J. N.
dc.contributor.authorKasharu, A.
dc.contributor.authorRees, Deborah
dc.contributor.authorKizito, Elizabeth B.
dc.contributor.authorHedwig, Acham
dc.date.accessioned2018-05-17T14:00:52Z
dc.date.available2018-05-17T14:00:52Z
dc.date.issued2018-05
dc.identifier.citationSekulya S. et al. Effect of Post-Harvest Handling Practices, Storage Technologies and Packaging Material on Post-Harvest Quality and Antioxidant Potential of Solanum Aethiopicum (Shum) Leafy Vegetable. American Journal of Food Science and Technology, 2018, Vol. 6, No. 4, 167-180 Available online at http://pubs.sciepub.com/ajfst/6/4/6 ©Science and Education Publishing DOI: 10.12691/ajfst-6-4-6en_US
dc.identifier.issnESSN: 2374-1155
dc.identifier.urihttps://hdl.handle.net/20.500.11951/230
dc.descriptionThe objective of this study was to determine the effect of post-harvest handling practices and storage technology on the post-harvest quality and antioxidant activity in S. aethiopicum, as well as determine the packaging material that could be able to maintain a high post-harvest quality during storage.en_US
dc.description.abstractSeveral studies have supported the use of vegetables as foods as well as medicinal plants. However, most especially for the leafy types of vegetables, their high moisture content gives them a short shelf life. On average Solanum aethiopicum (Shum) has a shelf life of one day, making it unable to keep fresh for a long time. The objective of this study was to determine the effect of post-harvest handling practices and storage technology on the post-harvest quality and antioxidant activity in S. aethiopicum, as well as determine the packaging material that could be able to maintain a high post-harvest quality during storage. The post-harvest handling and storage technologies were tested under three experimental conditions. Experiment one involved placing 2.0 kg of the harvested S. aethiopicum with roots intact (RI) and others with roots cut-off (RC) in a charcoal cooler (-CC), 21.0±1.00 °C, 95.67±3.01 %rh; in ambient storage (-AC), 23.8±2.86 °C, 69.38±6.72 % rh; and in cold room (-CR), 7.17±1.30 °C, 95.80±3.19 %rh. Experiment two involved storing 2.0 kg of S. aethiopicum in charcoal cooler with no water treatment (TT-) and in ambient storage while immersing in portable water for 2 to 3 seconds during the day (TT+). Experiment three involved packing 1.0 kg of S. aethiopicum sample of both RC and RI state to assess the effectiveness of the packaging materials (0.1 cm meshed perforated polyethylene (RC0.1), 0.5 cm meshed perforated polyethylene (RC0.5) and a 60 μm perforated polyethylene (RC60μm) in maintaining quality of the vegetables. The edible parts of the vegetable were tested for moisture content, percentage weight loss, chlorophyll content, polyphenol content and total antioxidant activity (as measures of post-harvest quality and shelf life) after every 24 hours. The antioxidant activity was determined by screening for free radical scavenging properties using diphenyl picryl hydrazyl (DPPH), Ferric reducing antioxidant power (FRAP) and ascorbic acid as standard. The results revealed that Shelf life was found to increase (from one day to four days) when the vegetable was intermittently immersed in portable water for 2 to 3 seconds after every one hour during the day for vegetables in ambient storage both with roots intact (RI(TT+)-AC and with roots cut-off RC(TT+)-AC). The samples stored in cold room and charcoal cooler showed slow and comparable reduction (percent) of weight for both intact and roots cut. The chlorophyll content decreased in all storage conditions, with ambient conditions showing the most rapid decrease. The total polyphenol fluctuated within relatively small limits for both with intact and roots cut-off when stored in cold room and charcoal cooler (6.25±0.05 to 9.35±0.05 mgGAE/gfw; respectively) within the four days of storage. Storage in ambient conditions indicated an increase in total polyphenol content from 9.35±0.05 to 14.77±0.12 mgGAE/gfw for that with roots intact (RI-AC) and to 13.65±0.06 mgGAE/gfw for roots cut-off (RC-AC). The increase in total polyphenol content in the ambient storage led to increased total antioxidant activity compared to that stored in cold room and charcoal cooler that remained almost constant. The 60 μm perforated polyethylene and 0.1 cm meshed perforated polyethylene retained more moisture (84.55±0.18 % and 85.20±0.03 %; respectively) and showed minimal percentage of weight loss (9.69±0.25 %) with the highest chlorophyll content (8.06±0.02 mg/g dwb) on day four when stored in the charcoal cooler, making it the best tested packaging material.en_US
dc.language.isoenen_US
dc.publisherScience and Education Publishingen_US
dc.subjectDiphenylpicrylhydrazylen_US
dc.subjectMedicinal plantsen_US
dc.subjectAntioxidanten_US
dc.titleEffect of Post-Harvest Handling Practices, Storage Technologies and Packaging Material on Post-Harvest Quality and Antioxidant Potential of Solanum Aethiopicum (Shum) Leafy Vegetableen_US
dc.typeArticleen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record