Browsing by Author "Zhu, Bao-Ping"
Now showing 1 - 6 of 6
Results Per Page
Sort Options
- ItemCholera outbreak caused by drinking contaminated water from a lakeshore water collection site, Kasese District, south-western Uganda, June-July 2015(Plos One, 2018-06) Pande, Gerald; Kwesiga, Benon; Bwire, Godfrey; Kalyebi, Peter; Riolexus, AlexArio; Matovu, Joseph K. B.; Makumbi, Fredrick; Mugerwa, Shaban; Musinguzi, Joshua; Wanyenze, Rhoda K.; Zhu, Bao-PingOn 20 June 2015, a cholera outbreak affecting more than 30 people was reported in a fishing village, Katwe, in Kasese District, south-western Uganda. We investigated this outbreak to identify the mode of transmission and to recommend control measures. We defined a suspected case as onset of acute watery diarrhoea between 1 June and 15 July 2015 in a resident of Katwe village; a confirmed case was a suspected case with Vibrio cholera cultured from stool. For case finding, we reviewed medical records and actively searched for cases in the community. In a case-control investigation we compared exposure histories of 32 suspected case-persons and 128 age-matched controls. We also conducted an environmental assessment on how the exposures had occurred. We found 61 suspected cases (attack rate = 4.9/1000) during this outbreak, of which eight were confirmed. The primary case-person had onset on 16 June; afterwards cases sharply increased, peaked on 19 June, and rapidly declined afterwards. After 22 June, eight scattered cases occurred. The case-control investigation showed that 97% (31/32) of cases and 62% (79/128) of controls usually collected water from inside a water-collection site ªXº (ORM-H = 16; 95% CI = 2.4±107). The primary case-person who developed symptoms while fishing, reportedly came ashore in the early morning hours on 17 June, and defecated ªnearº water-collection site X. We concluded that this cholera outbreak was caused by drinking lake water collected from inside the lakeshore water-collection site X. At our recommendations, the village administration provided water chlorination tablets to the villagers, issued water boiling advisory to the villagers, rigorously disinfected all patients' faeces and, three weeks later, fixed the tap-water system.
- ItemFactors contributing to measles transmission during an outbreak in Kamwenge District, Western Uganda, April to August 2015(BMC Infectious Diseases, 2018) Nsubuga, Fred; Bulage, Lilian; Ampeire, Immaculate; Matovu, Joseph K. B.; Kasasa, Simon; Tanifum, Patricia; Riolexus, Alex Ario; Zhu, Bao-PingBackground: In April 2015, Kamwenge District, western Uganda reported a measles outbreak. We investigated the outbreak to identify potential exposures that facilitated measles transmission, assess vaccine effectiveness (VE) and vaccination coverage (VC), and recommend prevention and control measures. Methods: For this investigation, a probable case was defined as onset of fever and generalized maculopapular rash, plus ≥1 of the following symptoms: Coryza, conjunctivitis, or cough. A confirmed case was defined as a probable case plus identification of measles-specific IgM in serum. For case-finding, we reviewed patients’ medical records and conducted in-home patient examination. In a case-control study, we compared exposures of case-patients Nand controls matched by age and village of residence. For children aged 9 m-5y, we estimated VC using the percent of children among the controls who had been vaccinated against measles, and calculated VE using the formula, VE = 1 - ORM-H, where ORM-H was the Mantel-Haenszel odds ratio associated with having a measles vaccination history. Results: We identified 213 probable cases with onset between April and August, 2015. Of 23 blood specimens collected, 78% were positive for measles-specific IgM. Measles attack rate was highest in the youngest age-group, 0-5y (13/10,000), and decreased as age increased. The epidemic curve indicated sustained propagation in the community. Of the 50 case-patients and 200 controls, 42% of case-patients and 12% of controls visited health centers during their likely exposure period (ORM-H = 6.1; 95% CI = 2.7–14). Among children aged 9 m-5y, VE was estimated at 70% (95% CI: 24–88%), and VC at 75% (95% CI: 67–83%). Excessive crowding was observed at all health centers; no patient triage-system existed. Conclusions: The spread of measles during this outbreak was facilitated by patient mixing at crowded health centers, suboptimal VE and inadequate VC. We recommended emergency immunization campaign targeting children <5y in the affected sub-counties, as well as triaging and isolation of febrile or rash patients visiting health centers.
- ItemA large and persistent outbreak of typhoid fever caused by consuming contaminated water and street-vended beverages: Kampala, Uganda, January – June 2015(BMC Public Health, 2017) Kabwama, Steven Ndugwa; Bulage, Lilian; Nsubuga, Fred; Pande, Gerald; Oguttu, David Were; Mafigiri, Richardson; Kihembo, Christine; Kwesiga, Benon; Masiira, Ben; Okullo, Allen Eva; Kajumbula, Henry; Matovu, Joseph K. B.; Makumbi, Issa; Wetaka, Milton; Kasozi, Sam; Kyazze, Simon; Dahlke, Melissa; Hughes, Peter; Sendagala, Juliet Nsimire; Musenero, Monica; Nabukenya, Immaculate; Hill, Vincent R.; Mintz, Eric; Routh, Janell; Gómez, Gerardo; Bicknese, Amelia; Zhu, Bao-PingBackground: On 6 February 2015, Kampala city authorities alerted the Ugandan Ministry of Health of a “strange disease” that killed one person and sickened dozens. We conducted an epidemiologic investigation to identify the nature of the disease, mode of transmission, and risk factors to inform timely and effective control measures. Methods: We defined a suspected case as onset of fever (≥37.5 °C) for more than 3 days with abdominal pain, headache, negative malaria test or failed anti-malaria treatment, and at least 2 of the following: diarrhea, nausea or vomiting, constipation, fatigue. A probable case was defined as a suspected case with a positive TUBEX® TF test. A confirmed case had blood culture yielding Salmonella Typhi. We conducted a case-control study to compare exposures of 33 suspected case-patients and 78 controls, and tested water and juice samples. Results: From 17 February–12 June, we identified 10,230 suspected, 1038 probable, and 51 confirmed cases. Approximately 22.58% (7/31) of case-patients and 2.56% (2/78) of controls drank water sold in small plastic bags (ORM-H = 8.90; 95%CI = 1.60–49.00); 54.54% (18/33) of case-patients and 19.23% (15/78) of controls consumed locally made drinks (ORM-H = 4.60; 95%CI: 1.90–11.00). All isolates were susceptible to ciprofloxacin and ceftriaxone. Water and juice samples exhibited evidence of fecal contamination. Conclusion: Contaminated water and street-vended beverages were likely vehicles of this outbreak. At our recommendation authorities closed unsafe water sources and supplied safe water to affected areas.
- ItemMeasles Outbreak Propagated by Children Congregating at Water Collection Points in Mayuge District, Eastern Uganda, July–October, 2016(BMC Infectious Diseases, 2018-08-20) Majwala, Robert Kaos; Nakiire, Lydia; Kadobera, Daniel; Ario, Alex Riolexus; Kusiima, Joy; Atuhairwe, Joselyn Annet; Matovu, Joseph K. B.; Zhu, Bao-PingBackground On 12 October, 2016 a measles outbreak was reported in Mayuge District, eastern Uganda. We investigated the outbreak to determine its scope, identify risk factors for transmission, evaluate vaccination coverage and vaccine effectiveness, and recommend evidence-based control measures. Methods We defined a probable case as onset of fever (≥3 days) and generalized rash, plus ≥1 of the following: conjunctivitis, cough, and/or runny nose in a Mayuge District resident. A confirmed case was a probable case with measles-specific IgM (+) not explained by vaccination. We reviewed medical records and conducted active community case-finding. In a case-control investigation involving probable case-persons and controls matched by age and village, we evaluated risk factors for transmission for both cases and controls during the case-person’s likely exposure period (i.e., 7–21 days prior to rash onset). We estimated vaccine effectiveness (VE) using the formula: VE ≈ (1-ORprotective) × 100. We calculated vaccination coverage using the percentage of controls vaccinated. Results We identified 62 probable case-persons (attack rate [AR] = 4.0/10,000), including 3 confirmed. Of all age groups, children < 5 years were the most affected (AR = 14/10,000). The epidemic curve showed a propagated outbreak. Thirty-two percent (13/41) of case-persons and 13% (21/161) of control-persons visited water-collection sites (by themselves or with parents) during the case-persons’ likely exposure period (ORM-H = 5.0; 95% CI = 1.5–17). Among children aged 9–59 months, the effectiveness of the single-dose measles vaccine was 75% (95% CI = 25–92); vaccination coverage was 68% (95% CI = 61–76). Conclusions Low vaccine effectiveness, inadequate vaccination coverage and congregation at water collection points facilitated measles transmission in this outbreak. We recommended increasing measles vaccination coverage and restriction of children with signs and symptoms of measles from accessing public gatherings.
- ItemModifiable risk factors for typhoid intestinal perforations during a large outbreak of typhoid fever, Kampala Uganda, 2015(BioMed Central, 2017) Bulage, Lilian; Masiira, Ben; Ario, Alex R.; Matovu, Joseph K. B.; Nsubuga, Peter; Kaharuza, Frank; Nankabirwa, Victoria; Routh, Janell; Zhu, Bao-PingBackground: Between January and June, 2015, a large typhoid fever outbreak occurred in Kampala, Uganda, with 10,230 suspected cases. During the outbreak, area surgeons reported a surge in cases of typhoid intestinal perforation (TIP), a complication of typhoid fever. We conducted an investigation to characterize TIP cases and identify modifiable risk factors for TIP. Methods: We defined a TIP case as a physician-diagnosed typhoid patient with non-traumatic terminal ileum perforation. We identified cases by reviewing medical records at all five major hospitals in Kampala from 2013 to 2015. In a matched case-control study, we compared potential risk factors among TIP cases and controls; controls were typhoid patients diagnosed by TUBEX TF, culture, or physician but without TIP, identified from the outbreak line-list and matched to cases by age, sex and residence. Cases and controls were interviewed using a standard questionnaire from 1st -23rd December 2015. We used conditional logistic regression to assess risk factors for TIP and control for confounding. Results: Of the 88 TIP cases identified during 2013–2015, 77% (68/88) occurred between January and June, 2015; TIPs sharply increased in January and peaked in March, coincident with the typhoid outbreak. The estimated risk of TIP was 6.6 per 1000 suspected typhoid infections (68/10,230). The case-fatality rate was 10% (7/68). Cases sought care later than controls; Compared with 29% (13/45) of TIP cases and 63% (86/137) of controls who sought treatment within 3 days of onset, 42% (19/45) of cases and 32% (44/137) of controls sought treatment 4–9 days after illness onset (ORadj = 2.2, 95%CI = 0.83–5.8), while 29% (13/45) of cases and 5.1% (7/137) of controls sought treatment ≥10 days after onset (ORadj = 11, 95%CI = 1.9–61). 68% (96/141) of cases and 23% (23/100) of controls had got treatment before being treated at the treatment centre (ORadj = 9.0, 95%CI = 1.1–78). Conclusion: Delay in seeking treatment increased the risk of TIPs. For future outbreaks, we recommended aggressive community case-finding, and informational campaigns in affected communities and among local healthcare providers to increase awareness of the need for early and appropriate treatment.
- ItemA prolonged, community-wide cholera outbreak associated with drinking water contaminated by sewage in Kasese District, western Uganda(BMC Public Health, 2018) Kwesiga, Benon; Pande, Gerald; Ario, Alex Riolexus; Tumwesigye, Nazarius Mbona; Matovu, Joseph K. B.; Zhu, Bao-PingBackground: In May 2015, a cholera outbreak that had lasted 3 months and infected over 100 people was reported in Kasese District, Uganda, where multiple cholera outbreaks had occurred previously. We conducted an investigation to identify the mode of transmission to guide control measures. Methods: We defined a suspected case as onset of acute watery diarrhoea from 1 February 2015 onwards in a Kasese resident. A confirmed case was a suspected case with Vibrio cholerae O1 El Tor, serotype Inaba cultured from a stool sample. We reviewed medical records to find cases. We conducted a case-control study to compare exposures among confirmed case-persons and asymptomatic controls, matched by village and age-group. We conducted environmental assessments. We tested water samples from the most affected area for total coliforms using the Most Probable Number (MPN) method. Results: We identified 183 suspected cases including 61 confirmed cases of Vibrio cholerae 01; serotype Inaba, with onset between February and July 2015. 2 case-persons died of cholera. The outbreak occurred in 80 villages and affected all age groups; the highest attack rate occurred in the 5–14 year age group (4.1/10,000). The outbreak started in Bwera Sub-County bordering the Democratic Republic of Congo and spread eastward through sustained community transmission. The first case-persons were involved in cross-border trading. The case-control study, which involved 49 confirmed cases and 201 controls, showed that 94% (46/49) of case-persons compared with 79% (160/201) of control-persons drank water without boiling or treatment (ORM-H=4.8, 95% CI: 1.3–18). Water collected from the two main sources, i.e., public pipes (consumed by 39% of case-persons and 38% of control-persons) or streams (consumed by 29% of case-persons and 24% control-persons) had high coliform counts, a marker of faecal contamination. Environmental assessment revealed evidence of open defecation along the streams. No food items were significantly associated with illness. Conclusions: This prolonged, community-wide cholera outbreak was associated with drinking water contaminated by faecal matter and cross-border trading. We recommended rigorous disposal of patients’ faeces, chlorination of piped water, and boiling or treatment of drinking water. The outbreak stopped 6 weeks after these recommendations were implemented.