Browsing by Author "Yanow, Stephanie K."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemA lab-on-chip for malaria diagnosis and surveillance(BioMed Central Ltd., 2014-05-09) Taylor, Brian J.; Howell, Anita; Martin, Kimberly A.; Manage, Dammika P.; Gordy, Walter; Campbell, Stephanie D.; Lam, Samantha; Jin, Albert; Polley, Spncer D.; Samuel, Roshini A.; Atrazhev, Alexey; Stickel, Alex J.; Birungi, Josephine; Mbonye, Anthony K.; Pilarski, Linda M.; Acker, Jason P.; Yanow, Stephanie K.Background: Access to timely and accurate diagnostic tests has a significant impact in the management of diseases of global concern such as malaria. While molecular diagnostics satisfy this need effectively in developed countries, barriers in technology, reagent storage, cost and expertise have hampered the introduction of these methods in developing countries. In this study a simple, lab-on-chip PCR diagnostic was created for malaria that overcomes these challenges. Methods: The platform consists of a disposable plastic chip and a low-cost, portable, real-time PCR machine. The chip contains a desiccated hydrogel with reagents needed for Plasmodium specific PCR. Chips can be stored at room temperature and used on demand by rehydrating the gel with unprocessed blood, avoiding the need for sample preparation. These chips were run on a custom-built instrument containing a Peltier element for thermal cycling and a laser/camera setup for amplicon detection. Results: This diagnostic was capable of detecting all Plasmodium species with a limit of detection for Plasmodium falciparum of 2 parasites/μL of blood. This exceeds the sensitivity of microscopy, the current standard for diagnosis in the field, by ten to fifty-fold. In a blind panel of 188 patient samples from a hyper-endemic region of malaria transmission in Uganda, the diagnostic had high sensitivity (97.4%) and specificity (93.8%) versus conventional real-time PCR. The test also distinguished the two most prevalent malaria species in mixed infections, P. falciparum and Plasmodium vivax. A second blind panel of 38 patient samples was tested on a streamlined instrument with LED-based excitation, achieving a sensitivity of 96.7% and a specificity of 100%. Conclusions: These results describe the development of a lab-on-chip PCR diagnostic from initial concept to ready-for-manufacture design. This platform will be useful in front-line malaria diagnosis, elimination programmes, and clinical trials. Furthermore, test chips can be adapted to detect other pathogens for a differential diagnosis in the field. The flexibility, reliability, and robustness of this technology hold much promise for its use as a novel molecular diagnostic platform in developing countries.
- ItemPrevalence of Plasmodium falciparum Resistance Markers to Sulfadoxine-Pyrimethamine among Pregnant Women Receiving Intermittent Preventive Treatment for Malaria in Uganda(Antimicrobial Agents and Chemotherapy, 2015-09) Mbonye, Anthony K.; Birungi, Josephine; Yanow, Stephanie K.; Shokoples, Sandra; Malamba, Samuel; Alifrangis, Michael; Magnussenf, PascalThe aim of this study was to assess the prevalence of mutations in Plasmodium falciparum dihydrofolate reductase (Pfdhfr) and dihydropteroate synthase (Pfdhps) genes among pregnant women using sulfadoxine-pyrimethamine (SP) as an intermittent preventive treatment (IPTp). A molecular epidemiological study of P. falciparum parasite resistance markers to SP was conducted from August 2010 to February 2012 in Mukono district in central Uganda. DNA was extracted from 413 P. falciparum-positive samples. Real-time PCR, followed by melting curve analysis, was used to characterize point mutations in the Pfdhfr and Pfdhps genes that are associated with SP resistance. The prevalence of the single-nucleotide mutations in Pfdhfr at codons 51I, 59R, and 108N and in Pfdhps at codons 437G and 540E was high (>98%), reaching 100% fixation after one dose of SP, while the prevalence of 581G was 3.3% at baseline, reaching 12.5% after one dose of SP. At baseline, the prevalence of Pfdhfr and Pfdhps quintuple mutations was 89%, whereas the sextuple mutations (including 581G) were not prevalent (3.9%), reaching 16.7% after one dose of SP. However, the numbers of infections at follow-up visits were small, and hence there was insufficient statistical power to test whether there was a true rise in the prevalence of this allele. The overall high frequency of Pfdhfr and Pfdhps quintuple mutations throughout pregnancy excluded further analyses of possible associations between certain haplotypes and the risk of lower birth weight and anemia. However, women infected with P. falciparum had 1.3-g/dl-lower hemoglobin levels (P_0.001) and delivered babies with a 400-g-lower birth weight (P_0.001) compared to nonparasitemic women. Despite this, 44 women who were P. falciparum positive at baseline became negative after one or two doses of SP (i.e., 50.5%), implying that SP-IPTp still has some efficacy. P. falciparum resistance markers to SP are high in this population, whereas P. falciparum infection was associated with poor birth outcomes.