Browsing by Author "Moody, Emily C."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemAssessment of Blood Levels of Heavy Metals Including Lead and Manganese in Healthy Children Living in the Katanga Settlement of Kampala, Uganda(BMC Public Health, 2018-06) Cusick, Sarah E.; Jaramillo, Ericka G.; Moody, Emily C.; Ssemata, Andrew S.; Bitwayi, Doreen; Lund, Troy C.; Mupere, EzekielBackground: Exposure to environmental heavy metals is common among African children. Although many of these metals are known neurotoxicants, to date, monitoring of this exposure is limited, even in countries such as Uganda that are undergoing rapid industrialization. An assessment of the burden and potential causes of metal exposure is a critical first step in gauging the public health burden of metal exposure and in guiding its elimination. Methods: In May 2016, we enrolled 100 children between the ages of 6 and 59 months living in the Katanga urban settlement of Kampala, Uganda. We measured whole blood concentrations of antimony, arsenic, barium, cadmium, cesium, chromium, cobalt, copper, lead, manganese, nickel, selenium, and zinc. Applying reference cutoffs, we identified metals whose prevalence of elevated blood concentrations was > 10%. We also administered an environmental questionnaire to each child’s caregiver to assess potential exposures, including source of drinking water, cooking location and fuel, materials used for roof, walls, and floor, and proximity to potential pollution sources such as main roads, garbage landfills, and fuel stations. We compared log-transformed blood metal concentrations by exposure category, using t-test for dichotomous comparisons and ANOVA for comparisons of three categories, using Tukeys test to adjust for multiple comparisons. Results: The prevalence of high blood levels was elevated for six of the metals: antimony (99%), copper (12%), cadmium (17%), cobalt (19.2%), lead (97%), and manganese (36.4%). Higher blood manganese was significantly associated with having cement walls (p = 0.04) or floors (p = 0.04). Cadmium was greater among children who attended school (< 0.01), and cobalt was higher among children who lived near a garbage landfill (p = 0.01). Conclusions: Heavy metal exposure is prevalent in the Katanga settlement and may limit neurodevelopment of children living there. Future studies are needed to definitively identify the sources of exposure and to correct potential nutritional deficiencies that may worsen metal absorption.
- ItemPiloting a Developmental Screening Tool Adapted for East African Children(MDPI, Children, 2018-07) Sajady, Mollika A.; Mehus, Christopher J.; Moody, Emily C.; Jaramillo, Ericka G.; Mupere, Ezekiel; Barnes, Andrew J.; Cusick, Sarah E.There is a need for developmental screening that is easily administered in resource-poor settings. We hypothesized that known risk factors would predict failed developmental screening on an adapted screening tool in East African children living in poverty. The sample included 100 healthy Ugandan children aged 6–59 months. We adapted a parent-reported developmental screener based on the Child Development Review chart. The primary outcome was failure to meet age-appropriate milestones for any developmental domain. Venous blood was analyzed for lead, and caregivers completed a demographics questionnaire. We used multivariate logistic regression models to determine if elevated blood lead and stunting predicted failure on the screener, controlling for maternal education level, age in months past the lower bound of the child’s developmental age group, and absence of home electricity. In the sample, 14% (n = 14) of children failed one or more milestones on the screener. Lead levels or stunting did not predict failing the screener after controlling for covariates. Though this tool was feasibly administered, it did not demonstrate preliminary construct validity and is not yet recommended for screening in high-risk populations. Future research should include a larger sample size and cognitive interviews to ensure it is contextually relevant.