Browsing by Author "Crean, A."
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Engineered Food Supplement Excipients From Bitter Cassava for Minimisation of Cassava Processing Waste in Environment(Future Foods Journal, 2020) Tumwesigye, Kashub Steven; O’Brien, E.; Oliveira, J.C.; Crean, A.; Sousa-Gallagher, Maria JoseUnchecked large-scale rudimentary upstream (sub-merged and solid state) fermentation processes of bitter cas- sava roots into alcohol have often contributed significantly to agricultural wastes into environment. Thus, the study explored a proven valorisation methodology, Simultaneous Release Recovery Cyanogenesis (SRRC) along with intact bitter cassava polysaccharide-rich derivatives (CWF), as an apt to find alternative materials for food supplement excipients. Triplicate CWF powder, peeled or intact bitter cassava roots, were produced and analysed to determine crit- ical properties suitable in tablet making. Exclusion approach, using SRRC and compaction, was performed to select desired powder properties for tablet formulation. Microcrystalline cellulose, with known properties for developing drug excipients, was used as a validation reference material. Tablets, for disintegration time and in- vitro dissolution rates studies were produced using wet-granulation, and their potential to release and bio-avail Iron-Zinc investigated in-vitro (pHs 1.2 and 6.8 solutions, 37 0 C). Morphology and Iron-Zinc dissolution-release mechanisms were examined. Kinetic models were used to describe matrix dissolution and Iron-Zinc release mech- anisms. Intact root powder compaction capacity, depicted by hardness, was 4.3, 4.4 and 4.6 KG at 200, 500 and 700 MPa respectively. Scanning Electron Microscopy (SEM) showed Iron-Zinc inclusion altered tablet morphol- ogy. Efficient matrix dissolution and Iron and Zinc release were achieved, showing apex recovery efficiency (98%, 30–45 min). Fitted models well-explained dissolution and release mechanisms (mean R 2 = 0.95), demonstrating adequacy. SRRC-improved intact bitter cassava was confirmed as potential alternative excipient’s matrix for Iron and Zinc release and bioavailability. Thus, this approach is practical for indirect waste elimination, and can promote strategy for sustainable valorisation of agricultural wastes and alternative functional food supplements delivery system.Item Integrated Process Standardisation as a Zero-Based Approach to Bitter Cassava Waste Elimination and Widely-Applicable Industrial Biomaterial Derivatives(Chemical Engineering and Processing Journal, 2016) Tumwesigye, Kashub Steven; Peddapatla, R.V.G.; Crean, A.; Oliveira, J.C.; Sousa Gallagher, Maria JoseIntegrated standardised methodology for biopolymer derivatives (BPD) production from novel intact bitter cassava was demonstrated by desirability optimisation of simultaneous release, recovery, cyanogenesis (SRRC) process. BPD were evaluated for yield and colour using buffer (0,2,4 % v/v), cassava waste solids (15,23,30 % w/w), and extraction time (4,7,10 minutes). Nearly all the root was transformed into BPD, with higher yield and colour in comparison to starch extrinsically processed. Maximum global desirability, predicted efficient material balance, buffer 4.0 %w/v, cassava waste solids 23 %w/w and extraction time, 10 minutes, producing BPD yield, 38.8 % wb Validation using buffer, 3.3% w/v, cassava waste solids, 30 % w/w and extraction time, 10 minutes, produced 40.7 % wb BPD. SEM, DSC, TGA, FTIR and moisture barrier analyses revealed a uniform microstructure and high thermal stability of BPD and film, thus demonstrating efficient performance of the standardised integrated methodology. Hence, processing intact cassava root as a standardised integrated methodology could be used to produce sustainable low cost BPD for a broad range of applications. Methodologies designed around standard integrated procedures, matching zero-based approach to contamination, are novel strategies, and if used effectively can eliminate cassava wastes and recover BPD resources as sustainable biomaterials.