Faculty of Engineering, Design and Technology
Permanent URI for this collection
Browse
Browsing Faculty of Engineering, Design and Technology by Author "Borglin, Sharon E."
Now showing 1 - 1 of 1
Results Per Page
Sort Options
- ItemBiologically directed environmental monitoring, fate, and transport of estrogenic endocrine disrupting compounds in water: A review(Elsevier Publications, 2006) Campbell, Chris G.; Borglin, Sharon E.; Green, F. Bailey; Grayson, Allen; Wozei, Eleanor; Stringfellow, William T.Endocrine disrupting compounds (EDCs) are contaminants that may be hormonally active at low concentrations and are emerging as a major concern for water quality. Estrogenic EDCs (e-EDCs) are a subclass of EDCs that, when organisms are exposed to them, function as estrogens. Given that there are numerous e-EDCs that can negatively affect humans and wildlife, general screening techniques like biologically based assays (BBAs) may provide major advantages by estimating the total estrogenic effects of many e-EDCs in the environment. These techniques may potentially be adapted for field portable biologically directed sampling and analyses. This article summarizes available BBAs used to measure estrogenic e-EDCs in the environmental samples and also presents results relating to fate and transport of e-EDCs. Estrogenic EDCs appear to be almost ubiquitous in the environment, despite low solubility and high affinity of organic matter. Potential transport mechanisms may include: (1) transport of more soluble precursors, (2) colloid facilitated transport, (3) enhanced solubility through elevated pH, and (4) the formation of micelles by longer-chain ethoxylates. Due to their persistent and ubiquitous nature, source control strategies for e-EDCs may reduce influent concentration to wastewater treatment plants so that the post treatment effluent will decrease concentrations to estrogenically inactive levels. Alternatively if source reduction is not possible, then more testing is needed on tertiary treatment technologies and treatment efficiencies for e-EDCs. There is still a need for research on remediation and restoration approaches for habitats disturbed by elevated e-EDC concentrations.