
CONDITIONAL INFERENCE 

BY 

JOHN MUSISI SENYONYI-MUBIRU 


B.Se.CHons.), (NRB) 


~ted for the degree of Doctor in the 

tment ;3tEltV3tic2., University of M.:::lboUL'tIl::. 

August. 1 



To my .beloved parent.::,. 


Mr. & Mrs. E.D.K. KAJJA, 


who have given unsparingly for me. 




Acknowlectqements 

ification 

( i i) 

(iii) 

1 . 

Notation and Symbols 

Introducti on 

initions of Ancil in the Presence Accessory 

(VL) 

1 

4. 

S. 

L. 

Th,::.: Pitman-Morgan as a Conditional 

The Analysis of Concurrent Regres2,ions 

An Anymptotic Property the Partial L lihood 

On JCtgers I Lemma on the MaxiIHUln Likelihood imators From 

Sub::',ets 01 Data 

Bib! iogralJllY 

4 

117 



(ii) 

f,CKNOWLEDGEMENTS 

First and foremost I wish to express my sincere thanks to 

my supervisors, Emeritus Professor E.J, Williams and Professor C,C. 

Heyde for their availability, guidance and encouragement in the course 

of my research. Various lecturers in the Department of Statistics, 

University of Melbourne, have given me invaluable advice and help when 

I most needed it. 

I would be lacking courtesy if I did not mention friends 

and loved ones who through their prayers and encouragement have made 

it possible for me to study singlemindedly. 

Last but not least, I am grateful to the Australian 

Government, through the Australian Development Assistance Bureau, for 

the Post-Graduate Award under which this work was carried out. 



(iii) 

CERTI F I CAT ION 

Unless otherwise stated, the work presented in this thesis 

is original: being work done by the author himself. Furthermore, it 

not been submitted for any other degree or award of benefit to the 

author. 

I also hereby declare that this thesis is less than 100,000 

words in length, exclusive of tables and bibliographies. 

JOHN MUSISI SENYONYI-MUBIRU. 



(iv) 

ABSTRACT. 


Conditional inference is a branch of statistical inference 

in which observed data is reduced using either sufficient or ancillary 

statistics. This often simplifies inference about the parameters. In 

comparison to full likelihood methods, conditional inference theory's 

performance still needs validating in many areas. Some of these are 

the concern of this thesis. 

While the definit.ion of an ancillary st.atistic in single 

parameter models unequivocal, t.he presence of accessory (or nuisa­

nce) paramet.ers in a model present.s problems in defining an ancillary 

st.atistic. St.at.istical literature abounds wit.h definitions of ancilla-· 

rit.y in this case. Some of t.he commonest. and most useful t.hese are 

discussed and shown t.o be int.errelated. This facilitat.es t.he choice of 

t.he st.rongest eligible ancillary in a problem, i ,e, that which offers 

the biggest. reduct.ion of the sample space. 

The Pit.man-Morgan for variance rat.ios in bivariat.e 

normal populations with unknown correlat.ion coefficient. is shown t.o be 

a conditional t.est.. We condition on sufficient. st.atistics for the 

accessory parameters to eliminat.e t.hem. The statistic is t.hen 

derived as an ancillary st.atistic for t.he accessory paramet.ers. 

Conditional inference procedures are useful in regression 

problems; in particular we discuss the analysis of concurrent 

http:facilitat.es


(v) 

regressions. Earl work on a restricted class of concurrent regre­

ssions is clarified using conditional methods. A suggested analysis of 

the general case is also presented. 

When a probability model depends on a number of accessory 

parameters which increases with the sample size, estimation methods 

based on the full likel ihood will often be inconsistent. Using a 

partial likelihood instead has been suggested. Local maximum partial 

1ikel ihood estimators are shown to exist, and to be consistent and 

asymptotically normal under mild conditions. These results also cover 

conditional and marginal likelihoods, thus considerably strengthening 

earl results in this area. 

In planning statistical inferences, it is useful to choose 

a sampling scheme which provides only the essential data to our 

inferences. Jagers' lemma proposes very general conditions under which 

maximum likelihood estimation from a subset of the data is identical 

with that from the full data. However the lemma is incorrect asI 

given. We show that an additional sufficiency condition repairs the 

lemma. It is further .shown that this lemma cannot extended to 

general exponential fami lies. 



(vi) 

NOTATION AND SYMBOLS 

(0 

Sections, definitions, examples, equations, propositions 

and theorems are numbered in the form k.g where k stands for chapter k 

and g the numerical sequence of whatever numbered. ego Section 

1. 2 the 2nd section in chapter 1. 

(ii) 

CX,A) : A measurable space where A a a-algebra on the event 

space X. 


PC.) Probability measure on a measurable space. 


Q x Q A cross-product of parameter spaces 111 and Q2'
1 2 
Rk k dimensional Euclidean space. 

G/G/1 General arrival, general service, single-server queue. 

2NCp,a2) Normal distribution with mean p and variance a . 


fCn) Gamma function. 


f' (e) First derivative the function f with respect to 8. 


f "(8) Second derivative with respect to e. 


a.s. [u] For almost all values of u. 


[A]T Transpose of matrix A. 


d "is distributed 

j "converges to" 

"tends almost surely to" 

"tends in distribution to" 

"asymptotically tends to" 



(vii ) 

(iii) Abbreviations 

£og Logarithm to base e. 

d. f. Degrees of freedom. 

ANOVA Analysis of Variance. 

contd. Continued. 
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1. INTRODUCTION. 


1.1 Conditional Inference, 

Statistical inference procedures which base inference on 

the conditional distribution given either ancillary statistics or 

sufficient statistics are what constitute conditional inference. The 

cho i ce to cond i tion on either the suff i or ancillary statistics 

is also very much dependent on the model under consideration. For 

example, if the distribution model depends on accessory parameters 

(that is, parameters which are not of interest to our particular 

problem) in addition to our parameter(s) of interest (we shall call 

the latter structural parameters), it is helpful to eliminate the 

accessory parameters. A useful course of action is to condition on 

sufficient statistics for the accessory parameters. Or it may happen 

that in the course of estimating a parameter, some 'information' will 

be lost. Conditioning on ancillary statistics in this case has been 

suggested. This gives us a measure of the precision of our estimate. 

Fisher0925,1934(1935) laid the foundation for conditional 

inference by introducing the concepts of 'sufficient statistics' and 

'ancillary statistics.' Sufficient statistics are functions of the 

observed data which contain all the available ' information' in that 

data about the structural parameter. Ancillary statistics, also 

functions of the observations, are by themselves uninformative or 

contain no ' information' about the parameter of interest. Formal 

definitions for sufficient and ancillary statistics will be introduced 

in the next section. In the recent past much work has been done, 

notably that of Andersen(1970 1973) , and of Kalbfleisch andf 
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Sprott(1970,1973), showing that the conditional approach often yie 

identical results to those we get with the full likelihood or even 

sometimes, more desirable results. Of course there are still many 

areas in which the effectiveness of conditional inference needs to be 

investigated. Some of these are the subjects of this thesis. Of 

particular interest are those distribution models which depend on 

accessory parameters. 

This chapter introduces the general definitions of !'!,uffl-­

cient and ancillary statistics in section 1.2. We further present a 

brief overview of the various uses for sufficient and ancillary stati 

stics in inference. In section 1.3, we give an outline of the work 

covered in this thesis. 

1.2 Sufficient and Ancillary Statistics. 

We shall consider a random variable X and a family of all 

possible distributions of X,~. The p.d.f. of X is denoted by f(x). 

Definition 2.1: 

A statistic S is sufficient for if condi tional dis-­

tribution of X given S, namely f(xls), is the same for all f £;;J. 

If is indexed by some parameter, 8, the definition means 

that the conditional distribution, f(xls) is independent of B. There­

fore when S is known, there is no additional 'information' contained 

in the data, beyond that already contained in S, about e. It is then 

logical to make any inference about 8 on the basis of Salone. S is 

called a minimal sufficient statistic for 8 if it is a function of any 

other sufficient statistic for 8. 
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Definition 2.2: 

A statistic LI is ancillary for a parameter, 8, if the 

marginal distribution of LI, fCu), is independent of 8. 

These definitions are unequivocal in as far as we do not 

introduce accessory parameters. But it is in this latter situation 

that conditional inference has proved most relevant, while simulta­

neously, results obtained in the one parameter case are not automa­

tically applicable to this multiparameter case. As well definitions 

both sufficiency and ancillarity are varied in the literature when 

accessory :parameters are present. A detailed discussion of ancillarity 

definitions presented in chapter 2. 

We may state the problem as follows. Assume that the 

probability model under consideration is fCx;8,¢), where 8 is the 

structural parameter and ¢ the accessory parameter. If Sand U, 

sufficient and ancillary statistics for ¢ respectively, exist, we can 

write 

(1.1) 

and 

(1. 2) 

Consequently, we may ask 

(a) like DawidC197S), which of the two models, fxlsex;8Is) in 

(1.1) and f Cu;8) in (1.2), is appropriate for our inference?u
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(b) assuming we choose EX IS(x: eIs), how much 'infonnation' on e 

is lost to fcCs;B,¢)? 
.J 

A related problem i8 the absence of an explicit mea8ure of 

information content. Pitman(1979, page 18) gives some examples and 

interesting remarks on using Fisher's information function as a 

measure of information showing that it may not actually reflect the 

information we want. 

We should note the lack of general patterns for constru­

cting anci llary statistics in particular. Coupled with this is their 

possible non-uniqueness. Therefore we often have to choose £I'om 

equally eligible ancillaries (Basu, 1964), 

Notwithstanding, ancillary and sufficient statistics are 

very useful in statistical inference. Fortunately, in course of 

conditioning on an ancillary istic no information loss is involved 

since the ancillary statistic is on its own uninformative about the 

structural pat~ameter. From the outset, FisherO 935) recognized that 

the ancillary statistic serves as an index, a measure of the precision 

of an estimate we may make of a parameter. To put it another way, the 

ancillary statistic will describe the dimension of the sample space 

relevant to our problem. An example from Cox and Hinkley (1974) 

illustrates this. 

Example 2.1: 

Assume we observe X such that it is equally likely to come from 

2 r, 2 2 
either of the two normal populations, N(~,01) and N(~,o~), 01 * ° 2 , 

both of and o~ being known. So inference from X will depend on whether 
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. Besides P(U=u) = 1/2, 1..1 1,2. The joint likelihood of 

X and U is 

Conditioning on U means the population sampled is specified, U being 

ancillary. Since we know the population, we do not need to consider 

the population that was not sampled. Therefore the ancillary statistic 

has specif ied the dimension of the sample space relevant to our 

inference. 

Sufficient statistics too play major roles in inference, 

some of which will be evident in the course of this thesis. Only a 

brief informative overview on their roles is given here. Sufficient 

statistics are useful in the following: 

(i) Sufficient statistics may be used to define the best 

critical region of a uniformly most powerful test. Lehmann(1959, page 

134-136) has shown that, in the case of the exponential family, it is 

possible to define uniformly most powerful tests whose test function 

is determined by the sufficient statistic. In fact, on the basis of 

the sufficient statistic, Fraser(1956) showed that the sign test is 

uniformly most powerful in a nonparametric location (family) problem. 

It is known that the critical region for a unifor-mly most 

powerful test is defined by the likelihood ratio. But the partitioning 
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of the sample space by the likelihood ratio is sufficient (Cox and 

Hinkley, 1974, page 24). Therefore the suff ent statistic def 

the best region by assuming a constant value along the boundary of the 

critical regions. 

It would seem from Neyman and Pearson (1936 ) that thIS 

theory cannot be generalised to all distributions i.e. the existence 

of a icient statistic no guarantee that a uniformly most 

powerful test exists. 

(1i) In the special case when the underlying distribution 

family is complete, Lehmann and Scheffe(1950) have shown that any 

function of a complete sufficient statistic will be the unique minimum 

variance unbiased estimator of its expectation, When completeness is 

removed, the estimator may not be unique, A short proof of this is 

available in Cox and Hinkley(1974, page 258-259), Conversely, if an 

estimator mi nimum variance unbiased estimator for its expected 

value, it must be a function of the sufficient statistic. In the cons­

truction of a minimum variance unbiased estimator therefore. it is 

advisable to start from a sufficient statistic if it exists. This 

result used in chapter 6. 

(iii) Sufficient statistics may also be used to derive 

non-null distributions from null distributions (Madow, 1945; Durbin, 

1980). S is sufficient in the model f(x;8) if 

f(x;8) g(s;8).h(xls). (1. 3) 

We assume the marginal density g(s;8) is unknown. Let e 

assume some value 8 and we have o 
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f(x;8
(I 

) = g(s;8
0 

).hexls). (1. 4) 

From (1.3) and (1.4), 

g(s:8) 
f(x;8) = f(x;8(1)'-- ­

g(s;8 )
o 

This technique will be used in chapter 3 to derive the 

distribution of a sufficient statistic. 

(iv) By far the most common usage of sufficient st.atistics 

is in the elimination of accessory parameters. This will be evident in 

the thesis too. 

Let f (x; e,I) the distribution from which the sample is 

taken where I may a vector accessory parameters. I f the model 

admi ts minimal suff i ci ent statisti cs f or the accessory parameters, 

Andersen(1973) suggests conditioning on the minimal sufficient 

statistics to eliminate these parameters, and proves that the estimate 

for 8 from the conditional distribution will satisfy a number 

desirable asymptotic results. We refer to some of these in chapter 5. 

50 if 5 is minimal sufficient for I, we have 

fex:e,I) - f(s;8,I).f(x;8Is). 

The insistence on using minimal sufficient statistics is to 

minimise the loss of information about e through f(S;e,I), 

(Andersen,1973, page 42). 
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Sometimes it happens that the sufficient statistic for r 

depends on 8, the structural parameter, as well. An example of this 

2the sufficient statistic for the variance a in a normal population 

with unknown mean p. This is 

s2 ::: LCx.-p)/n
1 

and if p is the structural parameter, we lllay not condition on s2 to 

eliminate . Kalbfleisch and Sprott(1970) have aptly described the 

problems involved in so doing. 

Basue 1955,1958) showed that under quite general conditions 

a statistic independent of a sufficient statistic will be ancillary. 

On the basis of this, Williams(1982) proposed and described how we may 

construct such an ancillary whenever the sufficient statistic depends 

on the structural parameter. So if S is sufficient for r and depends 

on 8, the conditional distribution function 

x 
J f(u,s;8,r)du 

-00 

F ex;8I s ) = c 
00 

f f(u,s;e,r)du 
-.00 

is, irrespective of the value of S, distributed uniformly over (0,1) 

and is thus independent of S. Any function of F can serve as our c 

ancillary for r and is thus available [or inference. 

DurbinC1 %1) presented an interesting use of sufficient 

statistics in the elimination of accessory parameters to for 

goodness-of-fit. Conditioning on sufficient statistics may permit a 

composite hypothesis to be tested as a simple hypothesis. 
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1.3 Outline of The Th?sis. 

As indicated earlier, definitions of ancillarity in the 

presence of accessory parameters are numerous. I n chapter 2, we 

present these definitions, examine them and discllss their 

interTelationships. When making statistical inference, this makes it 

possible to choose from the eligible ancillaries in a particular 

problem that ancillary statistic which best describes the dimension of 

our sample space relevant to the inference. Generally, the strongest 

ancillary statistic will be most useful. 

Pitman(1939) and Morgan(1939) devised a test for the ratio 

of variances in a bivariate normal distribution with unknown 

correlation coefficient, which is widely used today. Chapter 3 will 

show that this is a conditional test. (iii) and (iv) in section 1.2 

are particularly useful in this derivation. The successful conditional 

derivation of such an important testing procedure helps to establish 

conditional inference as a significant approach to problems in 

statistical inference. 

The analysis of concurrent regression lines first discussed 

in the literature by Tocher(1952) is presented in chapter 4 following 

the analysis of Williams(1959). It is shown that this analysis is an 

application of conditional inference procedures. We shall present a 

generalisation of the analysis to cases which TocherC1952) and 

Williams(1959) did not cover. The role of sufficient and ancillary 

statistics in the analysis is clarified; in fact, these statiBtics 

form the basis for the analysis. This suggests that identifying 

sufficient and ancillary statistics in regression problems may be a 
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useful initial step, and conditional procedures may then be applied 

design an appropriate analysis. 

It was pointed out earlier that distribution models with 

the number of accessory parameters increasing with the sample size, 

present additional problems which cannot be solved by simply applying 

the general conditional procedures. The introduction of the 'partial 

likelihood' by Cox(1975) is an attempt to deal with this problem. 

Chapter 5 discusses the joint uniform asymptotic normal i ty of the 

'normalised' first derivative of the partial likelihood and the 

'normalised information' function. It is shown that local maximum 

partial likelihood estimators exist and are both consistent and asymp­

totically normal under mild conditions. This result is easily applic<3.­

ble to the conditional and marginal likelihoods under simi lar general 

conditions to those for the partial likelihood. The conditions given 

shall also be shown to generalise results by Andersen 0 970 , 1973) on 

the conditional maximum likelihood estimators. 

One of the purposes for using conditional inference the 

reduction of data using sufficient and ancillary statistics. It 

important. that any reduction of data provides only the essential data 

to our inferences. This is not always so. Jagers'(1975) lemma asserted 

under rather general conditions that the conclusions .should be 

identical. This lemma is not true in its generality and a revised 

version of it is presented and proved in chapter 6. The revision of 

the lenuna is essentially to include a requirement of suHiciency. We 

consider an application of the revised version of JagerE': lemma to 

problems in Branching Processes and thereby show that the revised 
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version of the lemma not extendable to the general exponential 

family. 

It is easy to see that although all the chapters fall 

under the umbrella of conditional inference, there is relative 

independence across them. Consequently, it is attempted to make 

notations consistent wi thin each chapter while allowing [or some 

variation in notation between chapters. 
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2. DEFINITIONS OF ANCILLARITY IN THE PRESENCE OF ACCESSORY PARAMETERS. 

2.1 Introduction. 

The theory of ancillary statistics was initiated by 

Fisher(1925) in an attempt to recover some or all lost information in 

the estimation of unknown parameters with non-sufficient statistics. 

By definition, the ancillary statistics should, of themselves, contain 

no information about the parameter of interest since the distribution 

of an ancillary statistic must be independent of that parameter. As 

already pointed out in chapter 1, ancillary statistics are helpful in 

judging the precision of our estimators. When the underlying 

probability model sampled depends also on other parameters (not of 

direct interest to our particular study, and hence often called 

nuisance, incidental, or accessory parameters in the literature), 

defining an ancillary statistic useful for our inference is not 

straightforward; many varied definitions have been proposed in the 

literature. We shall present the major definitions and discuss how 

they are interrelated to place them in the order of their strengths. 

First, we need to make a note on the choice of the word 

'accessory' in preference to the more common word 'nuisance.' We may 

talk of a nuisance parameter only for a particular problem; in 

general, the word 'nuisance' is a misnomer. An example of sampling 

from the normal population illustrates this point. 

Let X be a random variable such that 
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2where ~ and 0 are unknown. 
2When making inference on /1, the variance 0 will be a 

'nuisance' parameter whose elimination we may desire. However, if the 

2problem is to make inference on 0 , then the mean /1 is a 'nuisance' 

parameter. The word 'nuisance' implies uselessness. Yet in each case, 

2neither /1 nor 0 is unimportant in the model although it may not be 

relevant to our particular discussion. 

Therefore, we shall call parameters which are not of 

interest in the problem at hand, 'accessory' parameters. 

2.2 Definitions. 

It has been hinted that the classical definition for an 

ancillary statistic is "a statistic whose distribution is independent 

(or free) of the parameter (of interest)." Let X be a random variable 

with probability density function f(x;8), 8 being a parameter from the 

space 2. This definition implies that U is ancillary for 8 if 

for proper probability density functions fu and fc' The subscripts U 

and C refer to the marginal distribution of U, and the conditional 

distribution of X given U, respectively. They will be used in like 

manner throughout this chapter and all factorisations will be taken to 

be into proper probability density functions. 

Now let 8 = (11 ,t]), where 11 is the parameter of interest 

(hereafter called the structural parameter) and f3 is the accessory 

parameter; 11 and f3 may be vector parameters. 
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Fraser(1956) proposed a definition for sufficiency in the 

presence of accessory parameters which is equally suitable for 

ancillarity. Barndorff-Nielsen(1978, Section 4.4) calls it 

S-ancillarity. 

Definition 	2.1: (S-ancillarity) 

Let (n,8) € Ql xQ2' Then U is (S-)ancillary for n if 

It is clear 	that U is also sufficient for the accessory parameter 8. 

Example 2.1: 

Let {Yijk }, i=l, ... ,m; j=l, ..• ,n; k=l, ... ,R; mnR=N be a set 

of random variables with finite mean such that 

E(Y. 'k) = J1+a. +8·.
1) 1) 

Then under the usual assumptions (i.e. La i = 0 L8 j ), 

-E(Y. - y = a .• 
1 •• 	 1 

If we assume Y. 'k is from a normal population with Var(Y. 'k) = 1, then 
1) 	 1) 

-u. = y. -	 Y has the probability density function 
1 1 •• 

fU(u.;a.) = c.exp{-
N--L (u.-a.) 

2 
},

1 1 	 2m 1 1 

where c is 	a constant. Therefore if Y = (Ylll""'YmnR)' 
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U. is ancillary for 8. by definition 2.1. 
1 J 

Although this definition has the advantage of separating 

the parameters completely. and also follows directly from the classi­

cal definition of ancillarity in the single parameter case, it lacks 

the wide applicability we need. In most of the examples we give later, 

it is clear that definition 2.1 is not satisfied. We need to define an 

ancillary statistic with the following properties: 

(i) It must be strong in the sense that it facilitates effective 

separation of the parameters, and its distribution should be 

functionally independent of the structural parameter. Definition 2.1 

has this property. 

(ii) It must be widely relevant in application. 

Although property (i1) may be desirable, it can only be 

satisfied to the loss (or at least undesirable weakening) of property 

(i). The following are among the major definitions in the literature 

which attempt to relax definition 2.1 somewhat to permit wider 

applicability. 

The next definition is due to Andersen(1970,1973, page 99). 

Definition 2,2: 

U is 'weakly ancillary' for Tl in the presence of the 

accessory parameter 8 if given any values Tl and 8 of Tl and 8 o 0 
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respectively, we can find a differentiable function ljJ(11) such that 

a.s. [u] for all 11. 

The intuitive idea in this definition is that the family of 

marginal distributions of u does not vary with 11, i.e. this family is 

independent of 11. Therefore no inference about 11 can be drawn based on 

the marginal distribution of u when 8 is unknown. 

Example 2.2 (Liang,1983): 

Let Xl and X2 be independent normally distributed random 

variables such that 

and 

Define T=X1+X2, Clearly T is normally distributed with mean 11+28 and 

variance 2. Then for any (11 ,8 ) £ ~2 if we choose ljJ(11) = -11+11 +8 , T o 0 0 0 

is seen to be weakly ancillary for 11, We note of course that T is also 

sufficient for 8 the accessory parameter. But since the distribution 
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of T depends on TJ as well, it does not satisfy the ancillarity of 

definition 2.1 (Note that in this example T is also weakly ancillary 

for fJ). 

When f(x:9) is from the Darmois-Koopman-Pitman class of the 

exponential family, i.e. 

f(x;9) = c(TJ,fJ) exp{s(x,TJ) + u(x)fJ}, (2.1) 

we know (Lehmann, 1959, page 52) that the marginal density of U is 

where r(u,TJ) is the integral of exp{s(x,TJ)} over all x such that 

U(x)=u. Andersen(1970) proved the following lemma which characterises 

weak ancillarity in this case. 

Lemma 2.1: 

The statistic U in (2.1) is weakly ancillary if and only if 

Hog r(u,TJ) = a(TJ)u + b(TJ) + d(u), 

where a and b are functions of TJ only. 

We give an example to illustrate the value of this lemma. 

Example 2.3 (Andersen,1970): 

Let X, and Y, be independent Poisson variates with means 
1 1 

exp(TJ+fJ.) and exp(fJ.) respectively (i=1, ... ,n). Define T.=X.+Y .. It is 
1 1 111 
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easy to see that the conditional distribution of (Xi,Vi ) given Ti is 

free of Pi' Furthermore, the marginal distribution of Ti is 

Then 

Therefore t. is weakly ancillary for Tj. Moreover a simple
1 

investigation of the mean of ti shows that the choice of ~i(Tj) is 

These examples show that inference about Tj should be drawn 

from the conditional distribution given the weak ancillary U. Moreover 

U is sufficient for the accessory parameter so that the conditional 

distribution is free of P and thus available for inference. 

Our next definition is due to Cox(1958) (also in Cox and 

Hinkley, 1974, page 31-32). This is an extension of the definition of 

ancillarity for a single parameter model, contained in the same paper. 

Let S=(T,U) be minimal sufficient in the one parameter probability 

model. Then if U is distributed free of the structural parameter, U is 

said to be ancillary for the parameter. It is also required that U is 

of maximum dimension i. e. a maximal anci llary. Such U may also be 
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called 'S-contained' or 'internal' because it is a function of the 

(minimal) sufficient statistic. 

Clearly, according to Basu's(1955, theorem 2) theorem, we 

cannot have an S-contained ancillary if S is (boundedly) complete 

since then ancillary statistics are independent of S. This point is 

further clarified in Lehmann(1981, sections 2 and 4). 

Definition 	2.3 (CoK,1958): 

Let S=(T,V,U) be minimal sufficient for 8=(~,8) so that 

(i) There exist functions meT ,~) such that the conditional 

distribution f(m;~lu) is independent of 8. Furthermore, T,V and 

U are of the maximum dimension permitting this independence. 

(ii) Any of the following conditions holds with respect to the 

density of U, fU(u;~,8): 

(b) Given any pair of values ~1' ~2 and any u, the ratio 

fu(u;~1,8)/fU(u;~2,8) runs through all the positive values as 

8 varies. 

(c) If fV(v:~,8) and fu(u;~,8) are the marginal densities of 

V and U respectively, then given values ~1' ~2 of ~, there 

will exist admissible values 81, 82 of 8 such that 
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f V(v; 171,8) f V(V;17,81) 
= 

f V(v; 172,8) f eV;17,82)v

and 


fU(u; 171,8) fU(U;17,81) 

= 

fU(u; 172,8) fU(U;17,82) 

i ,e. any intended distinction between values of 17 can be 

regarded as a distinction between values of 8. Hence U and V 

provide no direct information on 17. 

The U thus defined is called an (S-contained) ancillary statistic for 

17, and inference about 17 should be based on f(m:17lu), 

From this definition U should be a maximal ancillary. This 

is the main purpose of the requirement on dimension in condition (i). 

Condition (ii) ensures the uninformativeness with which we shall have 

much to do in the discussion in section 2.3 as we compare this defini­

tion with others. V is the residual statistic when S is partitioned 

into T and U and need not actually exist. 

Example 2.4 (Cox and Hinkley, 1974, page 32-33): 

Let Yl,f" Yn be an independent normally distributed sample' 

with 

d 2Y. = N(r+8X . I a )
] ] 

I 

and x has probability density function f(x). Then 
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S=(/,B,SS ,LX',LX~) is minimal sufficient where SS =L(Y ,-;-OX ,)2,res ] ] res ] ] 
A A 

and I and B are the maximum likelihood estimators for I and B. 
A A 2 

If we let T=(/,B), V:::SS and U:::(LX]"LX],), U will be an res 

S-contained ancillary for (/,B). U is distributed free of all 

parameters so that condition (ii) is trivially satisfied. 

Example 2.5 (Cox,1958): 

Let X and Y be two independent Poisson distributed random 

variables with means A1 and A2 respectively. Define ~=A2/A1 so that 

B~=A2 (or B:::A 1 ). The joint likelihood of X and Y is 

e-B(l+~){B(l+ij)}s s! 1 t ij s-t 
(-) (-) 

Xl y! sl t!(s-t)! l+ij l+ij 

where S=X+Y, T:....X. S is an S-contained ancillary for ij since we may 

redefine the parameters so that B*:::B(l+~). Clearly, we can choose some 

B for any given ij such that B(1+~ )=B (1+ij): thus leaving the o 0 0 0 

likelihood ratio unaltered. Condition (ii)(c) is thereby satisfied. 

Sprott(1975) proposed definitions for marginal and 

conditional sufficiency. But as we shall make clear, these can be 

adopted as definitions of ancillarity. Motivation for these 

definitions is the property of the likelihood ratio that it is minimal 

sufficient. Therefore, defining a statistic that is ' in some sense' 

independent of the likelihood ratio obtains for us another definition 

of ancillarity in the presence of accessory parameters. 
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Definition 2.4 (Sprott,197S): 

Let X=(X1 , ... ,X ) be summarised in (U,V) whose distribution n

factorises as follows: 

and 

either 

(a) given any value fJ o of fJ, fC(v:7/,fJlu)/fcev;7/,fJolu) is 

independent of v, 

or 

(b) we can find a function m(v,7/,fJ) such that 

(i) given any values m , v , v1 ' 7/
000 

of m, v, 7/ respectively 

we can find fJ o ' fJ 1 such that 

and the distribution of m is independent of fJ, 

(ii) fC(v;7/,fJlu)/fC(v;7/,fJolu) is a function of fJ, fJ and m o 

only. 

Then U is ancillary for 7/. 

We note that condition (b)(i) implies that two different 

values of v can be made to yield the same value of m by an appropriate 

choice of fJ. 

Clearly, even without conditions (a) or (b), U is already 

ancillary for 7/ since U is distributed free of 7/. However, these 

conditions enable the conditional distribution given u to be 
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uninformative toward /3 thus facilitating useful separation of the 

parameters. This does not of course mean that U is maximal ancillary. 

For, if the underlying probability model is complete, say, by 

Basu's(1955) theorem we would expect any ancillary statistic to be 

independent of the likelihood ratio. 

Further, from Sprott(1975) we have 

DefiniHon 	2.5: 

Assume X=(X1, ... ,X ) is summarised in (U,V) such thatn

f(u,V;11,/3) 

and 

either 

(a) given any value 110 of 11, fU(U;11,/3)/fu(U;11o ,/3) is 

independent of u, 

or 

(b) we can find a function n(u,11,/3) such that 

(i) given any no' u 
O 

' u1 and 110 values of n,u and 11 

respectively, there exist /30' /31 such that 

and the distribution of n is independent of /3, 

(ii) f (U;11,/3)/f (U;11 ,/3) is a function of 11,110 and nu	 U o

only. 

Then U is ancillary for 11. 
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In our later discussion, we shall find definition 2.5 more 

useful than definition 2.4. From definition 2.5, U is functionally 

independent of the likelihood ratio in (a) which therefore achieves 

our purpose. In Cb) however, part (i )implies that U can be made to 

yield the same value of n by a convenient choice of P i.e. U cannot be 

used to distinguish between values of n when P is unknown. In fact if 

gCn;8) is the probability density function of n, gCn :n)/gCn1 ;n) is o

independent of U since some choice of P will satisfy the values of n o 

and irrespective of the value of U. It follows by (ii) that then1 

likelihood ratio for n on n is essentially independent of U since it o 

depends on n, n and no only. 

Example 2.6 CGodambe,1980); 

Let X be a gamma random variable such that X1 and X2 are 

observations on X. The joint likelihood is given by 

Cn,P) £ CO,~)xCO,~). Then CX1X2,X1+X2) is minimal sufficient for 

Cn,P). Let U::::X1+X2. The probability density function of U is 

u>O, 

and the likelihood ratio is 

2(n1-n2) 
fUCu;n1'P) CPu) fC2n2) 

fuCu;n2'P) fC2n1) 
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By choosing n=8u, we see that given any values of u and 171 , some 8 

exists appropriately chosen to satisfy any value of n, i.e. 8=n/u. The 

probability density function of n is 

-u 217-1e u 
u>O, 

r( 217) 

which is independent of 8. So (b)(i) is satisfied. The likelihood 

ratio above can be written as I"!.,
Y"; 

2(171- 17 2) 

n r(2172) 


r(2171 ) 

a function of 171 , 17 2 and n only as required in (b) Oi). Thus U is 

ancillary. We shall later show that U is not ancillary by definition 

2.3. 

We now present yet another definition of ancillarity due to 

Godambe(1980) . 

Definition 	2.6: 

U is ancillary for 17 'ignoring 8' if 

(i) The conditional distribution of X given U depends on 8(=(11,8)) 

only through 17, i.e. 

(ii) The class of marginal distributions of U 
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is complete for each fixed ~, 

Example 2.7 (Godambe,1980); 

Let Xo"" ,Xn be independent and identically distributed 

Poisson random variables such that 

i=O,l"",n 
x. ,

1 ' 

it is easy to see that the marginal distribution of u=rXi is 

-if; u e if; 

f UCu;81,82) =- ­


u l 

so that the distribution of X given U is 

which is free of 82, 
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A second example of this type of ancillarity is example 2.6 

given above with U=X1+X2 ancillary. 

Lehmann and Scheffe(1950, examples 3.5 and 3.8) have shown 

the completeness of U in both these examples. So by Godambe's 

definition, U is ancillary in both cases. 

We make the following remarks on definition 2.6: 

a) Since in condition (i) the accessory parameter $ is eliminated 

upon conditioning on U, U is sufficient for $. Basu(1955,1958) and 

Lehmann(1981) clarify the role of completeness in (ii), showing 

that a complete sufficient statistic separates out ancillary 

information by making the ancillary part of the data independent 

of the sufficient statistic. Therefore in the definition 

completeness of U rids it of any ancillary information about $. 

(b) It is not clear what the phrase ' ignoring $' means. The 

definition therefore remains vague in this phrase. 

(c) Unlike the earlier definitions this one is based on the 

inability to extract information from the distribution of the 

ancillary statistic. However, if the structural parameter is 

inextricably mixed up with the accessory parameter I this is not 

conclusive evidence toward lack of information or even 

ancillarity. This demands further justification which is lacking 

in Godambe's definition. 

j~ , 
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Since this definition is based on 'unavailability of 

information' we shall see that it is closely related to the definition 

we now proceed to present, due to Johansen(1976): 

First of all we introduce the concept of 'easily available 

information' on which Johansen based this definition. CU,T) is said to 

contain 'easily available information' about Tl if Borel functions v 

and w exist such that 

De£inition~ 

A statistic U is anci llary for Tl if (U, 1 ) contains no 

'easily available information' on Tl; i.e. if we cannot find some Borel 

functions v and w such that 

As justification for this definition, Johansen(1976) proved 

the following theorem. 

Theorem 2.1: 

Let the family F={f(x;Tl,$), X€){ ICTl,$)€2 X22} of distribu­1
tions of X be complete for each fixed Tl=Tlo and let there exist some U 

such that 

C2.2) 


i.e. U is sufficient for the accessory parameter $. Then if there 

exist Borel functions aCu) and bCu) such that 



29 ­

the distribution f2(aCu);nlb(u)) is a one-point measure. 

We may rephrase this result as follows: if the family F be 

complete for fixed n=n and equation (2.2) above is true, no o 

non-trivial Borel functions of U, aCu) and b(u) exist such that (U,1) 

contains 'easily available information' about n, i.e. U is ancillary 

according to definition 2.7. This forms a bridgehead with definition 

2. 6 and thi s resultis forma lised in proposition 2.7. Theorem 2. 1 

therefore 	serves to clarify the basis of definition 2.6 as well. 

Examples 2.6 and 2.7 illustrate this definition. 

We note the following consequent results from theorem 2.1. 

(i) The case when the family F is complete for fixed n=n provides us o 

with a requirement on this definition. Then the sufficiency of U for 8 

implies ancillarity of U for n. When F is not complete, the definition 

may be weak in application as we cannot always check for the 

'non-existence' of functions a(u) and b(u). 

(ii) This theorem is also significant for other definitions. We recall 

that the purpose in all definitions is that inference be based on the 

conditional model fc(x;nlu) in (2.2) and we want f Cu;n,8) to be u
independent of n in some way. Under the conditions in theorem 2.1, no 

further useful reduction of the distributions of U is possible. 

Therefore for complete families, this definition (or equivalently 

definition 2.6) will be at least as relevant in inference as any of 

~-' i 
Of 
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the others. For, whatever conditions we impose on fu(u;~,P)-which is 

the essence of the earlier definitions-it will remain the simplest 

reduction in ~ possible in the distributions of U. 

Barndorff-Nielsen(1973) defined 'M-ancillarity' based on 

the notion of 'universality,' 

Let be a family of probability measures indexed withP 8 

8£Q. P is said to be universal if given any x' from the sample space e 
}{, we may choose e £Q such that o 

for all x, and for all P£ P e, 

Example 2.8; 

Let 

function 

X be a binomial random variable with probability 

b( )x;n,p = en)x x(l_ )n-xp p , x=O,l , . , . , n 

and n is fixed. Let n=5, say 

b(x;n,p) is maximum. 

If x=2, Po=2/5, 

if x=l, po=1/5, etc. 

This family too is universal. 

and p
o 

be the value of p at which 

Definition 2.8; 

A statistic U is M-ancillary for ~=~(e) if 
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where fu is the marginal density of U, and 

(ii) For each fixed ~=~ , the familyo 

is universal. 

Barndorff-Nielsen argues that since we can make any value 

of U the mode by an appropriate choice of ~, then U is uninformative 

about ~ and hence ancillary for ~. It is therefore the condition of 

universality in (ii) of the definition that is considered definitive 

of uninformativeness in M-ancillarity. This would mean that X in 

example 2.8 is uninformative about p. This is not altogether true. 

Johansen(1977) shows that M-ancillarity may be unreasonable 

with the following example. 

Example 2.9; 

Let X and Y be independent variables with 

P(X=l) = p, P(X=O) = q; p+q=l 

P(Y=-l) = a, P(Y=O) = q, P(Y=l) = p-a. 

Let ~(a,p) = p and 

Q = {(a,p)IO ~ a ~ P, 1/2 ~ p ~ 2/3}. 
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Then Y=-1 is the mode for a=p, Y=O is the mode for a=p/2 and Y=1 is 

the mode for a=O. Therefore Y is universal. 

Moreover eX,Y) is minimal sufficient for (a,P) such that 

since X and Yare independent. Thus Y is sufficient for a, the 

accessory parameter. If we choose U(X,Y)=Y , U is M-ancillary for p. 

Thus inference about p should be conditional on U Le. based on X 

alone. 

But the distribution of y2 depends on p alone so that X and 

y2 are independent and identically distributed random variables. 

Furthermore, (X,Y2) will contain twice as much information on p as X; 

while conditioning on U utilises only half of that information. So 

M-ancillarity may yield unreasonable results. In the light of this, 

our discussion that now follows will not further consider 

M-ancillarity. 

2.3 Relationships Between The Definitions. 

Since the concept and purpose of ancillarity are clear I 

Le. that the distribution of an ancillary statistic is in someI 

sense' independent of the structural parameter and inference is made 

conditional on the ancillary statistic, there are necessarily simila­

rities in the way these objectives are achieved in the definitions. 

The work in this section explores these similarities. Proposition 2.7 

has previously been proved in Gordon(1981); the rest are original. 
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In definition 2.3 it is condition (ii) which is meant to 

define an effective ancillary statistic in inference. Condition 0) 

ensures that the ancillary statistic is 5-contained and maximal. 

Therefore only condition (ii) shall be used for the discussion in this 

section. 

Proposition 2,1; 

Definition 2.1 implies definition 2.2. 

Proof: 

From definition 2.1, U is ancillary for ~ if 

If we take any values ~ and P of ~ and P, and define a function ~(~)o 0 

such that ~(~)=Po for all ~, clearly 

since the marginal distribution of U is free of ~. 50 U is 'weakly 

ancillary' for ~. 

Similarly condition Oi)(a) of definition 2.3 will imply 

definition 2.2. 

Proposition 2,2 

Definition 2.2 implies condition (ii)(c) of definition 2.3. 

Proof; 

Let U be weakly ancillary. Then given ~ , P , we can find a o 0 

differentiable function ~'(~) with ~'(~ )=8 such that o 0 
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a.s. [uJ. As well, given n
1 

, Po, we can still find a differentiable 

function ¢*Cn) with ¢*Cn
1 

)=P
O 

such that 

a.s. [uJ. So 

fU(u:no'Po) fU(u:n,¢'(n)) 
= * .
f U(u;n1,p ) fUCu;n,¢ (n))o

Since this is possible for any choice of P=P , we may write 
o 

fUCu;no'P) f UCu;n'¢1 (n)) 
= 

fUCu;n1,P) fU(u;n'¢2 Cn )) 

f U(u:n,P1) 
= 

fUCu;n,P2) 

which is condition (ii)Cc) of definition 2.3. 

As a corollary, definition 2.2 will imply definition 2.3 if 

U is an S-contained weak ancillary. Furthermore, we can conclude from 

these two propositions that definition 2.1 implies condition Cii)Cc) 

of definition 2.3; the direct proof to this conclusion is trivial. 
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Proposition 2.3: 

Definition 2.2 implies definition 2.5. 

Proof: 

Let U be weakly ancillary for ij in the model f(x;ij,P). Then 

for any values ijo and Po of ij and p, a differentiable function ~'(ij) 

exists such that ~'(ijo)=Po and 

a.s. [u]; Le. 

a.s, [u]. This is true for any P such that a differentiable function o 

satisfying this equality exists. Since P can be chosen arbitrarily,
o 

we write P instead of P to allow for variation. Thus for any P value,
o 

a differentiable function ~*(ij) for which l(ijo)=p will exist such 

that 

a.s. [u]. ij is allowed to vary in the right hand side of the equality 

so that ~ *(ij)=P at some ij value (one such value is ijo but there could 

be others), Then 

fUCu;ijo'P) 
= 1 

fu(u;ij,p) 

independent of U. Hence U is ancillary according to definition 2.5. 



- 36 ­

From propositions 2.1 and 2.3, we can conclude that 

Fraser's definition 2.1 implies definition 2.5 too; the direct proof 

to this is also trivial. 

Proposition 2.4; 

Condition (ii)(a) of definition 2.3 implies definition 2.5. 

Proof; 

This proposition follows easily from a similar result that 

definition 2.1 implies definition 2.5, noted above since in condition 

(ii)(a) of definition 2.3 we have 

as for definition 2.1. 

To give further clarification on the difference between 

condition (ii)(c) of definition 2.3 and definition 2.5, we give two 

examples both quoted earlier. They show that neither definition need 

imply the other. 

Example 2.5 (contd,); 

The probability function for the ancillary statistic was 

found to be 

e-SO +71) {SO +71)} u 

u! 


and hence the likelihood ratio of 711 to 712 is 
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f U(u;1]1· 8 ) 

f U(u;1]2· 8 ) 

This evidently satisfies neither condition (a) nor (b) of definition 

2.5. although it satisfies condition (ii)(c) in definition 2.3. 

Example 2.6 (contd.): 

This example was quoted to illustrate definition 2.5. The 

likelihood ratio for 1]1 :1]2 is 

fU(u;1]1· 8 ) 

fu(u;1]2· 8 ) 

f U(u;1].81) -u(8 -8 )1 2 e 
fu(u;1].82) 

Condition (ii)(c) in definition 2.3 requires that these ratios be 

equal for some 81 and 82, Clearly this will not always be possible. 

Therefore definition 2.3 is not satisfied. 

It is interesting to note however that this latter example 

satisfies condition (ii)(b) of definition 2.3. The relationship 

between this condition and definition 2.5 is as follows: 

Proposition 2.5: 


Condition (ii)(b) of definition 2.3 implies definition 2.5. 


http:fu(u;1].82
http:fU(u;1].81
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Proof: 

By condition (ii) (b) of definition 2.3, 

fU(u;~1,8)/fU(u;~2,8) runs through all the positive values as 8 

varies. This is irrespective of the value of U. Thus this likelihood 

ratio is independent of U and definition 2.5 is satisfied. 

Proposition 2.6: 

Definition 2.1 implies definition 2.7. 

(Similarly condition (ii)(a) of definition 2.3 will imply definition 

2.7). 

Proof; 

If U does not satisfy definition 2.7, there must exist v 

and w such that 

However, in definition 2.1, fu(u;~,8)=fu(U;8) so that such v and w 

cannot exist. This proves the proposition. 

Definitions 2.6 and 2.7 are similarly based on the concept 

of completeness and therefore on the concept of 'unavailable 

information.' The relationship between them was formalised by 

Gordon(1981) in the following proposition. 

Proposition 2.7: 

The ancillarity of definition 2.6 implies that of 

defini tion 2.7. 
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Proof; 

It suffices to show that if the class H={fu(u;~,P)I(~,P)€Q} 

of marginal distributions of U is complete for each fixed ~, then 

(U,l) contains no 'easily available information' on ~, thus satisfying 

definition 2.7. 

Let g and h be functions of U such that 

According to theorem 2.1, this distribution is a one-point measure. 

Thus no such g(u) and hCgCu)) exist for the equality above to hold in 

a non-trivial way. So (U,l) contains no 'easily available information' 

about ~, and the proposition is proved. 

2.4 Conclusion. 

We have established some interrelationships between the 

various definitions of ancillarity in the presence of accessory 

parameters. In particular, it is instructive to classify together the 

definitions of Fraser(1956), Andersen(1970,1973), Cox(1958) and 

Sprott(1975) while the definitions of Godambe(1980) and Johansen(1976) 

are related through their requirement of 'unavailable information' 

achieved through completeness. 

Therefore we compare the first four definitions. On the 

basis of their relative strengths, it is clear that definition 2.1 is 

the most restrictive while condition (ii)(c) of definition 2.3 and 

definition 2.5 appear to be the least restrictive. It is difficult to 

say which definition will be most useful in practice. However, in each 
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problem it seems advisable that the strongest eligible definition be 

applied as that would appear to offer the biggest reduction in the 

sample space; a fact illustrative of its strength. 

Note too that the difference between condition (ii)(a) of 

definition 2.3 and definition 2.1 lies in the fact that the latter 

ancillary statistic is also sufficient for 8. 

On the other hand, definition 2.6 is stronger than 

definition 2.7. The usefulness of these two definitions in inference 

may be in doubt as may be deduced from the comments in section 2.2. It 

was pointed out to me however, that definition 2.1 will imply 

definition 2.6 in case of the exponential families since they are 

complete. It also follows that condition Oi)(a) in definition 2.3 

will not imply definition 2.6 since we cannot have S-contained 

ancillaries in complete families. Nevertheless, theorem 2.1 gives an 

indication of how much reduction by ancillarity we can achieve in 

complete families. 

The following table is given to assist in summarising the 

results of this chapter. A tick means that the definition in the row 

implies the definition in the corresponding column. 
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DEFINITION 2.1 2.3 2.2 2.3 2.3 2.5 2.6 2.7 
C (ii) C (ii) C (ii) 

(a) (b) (c) 

2.1 I I I I ;* I 

2.3 
C (ii) I I I I 

(a) 

2.2 I I 

2.3 

C (ii) I 


(b) 

2.3 

C (ii) 


(c) 

2.5 

2.6 I 

2.7 

where C = Condition. *This holds for complete families. 
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3, THE PITMAN-MORGAN TEST AS A CONDITIONAL TEST. 

3.1 Introduction. 

Finney(1938) developed a significance test for the ratio 

of variances in a bivariate normal distribution when the correlation 

coefficient is known. Nevertheless his adaptation to the case when the 

correlation coefficient is unknown, and hence can only be estimated, 

is inadequate. Pi tman(1939) and Morgan(1939), however, developed a 

suitable test criterion for the latter case. This is what we call the 

Pitman-Morgan test for variance ratios in a bivariate normal 

distribution. 

In our work, the correlation coefficient, p, is an 

accessory parameter. By conditioning on a sufficient statistic for p 

to eliminate it and applying conditional inference procedures 

developed in Williams(1982), we show that the Pitman-Morgan test is, 

in fact, a conditional test. Successful application to such an 

important test criterion, lends credibility to conditional inference 

procedures as being able to give a significant alternative approach to 

problems in statistical inference. In this problem, sampling 

conditionally yields identical results to unconditional sampling. Here 

the test criterion is derived as a test for independence between 

sufficient and ancillary statistics. Furthermore, it is often possible 

to transform tests so that we test for such independence, with 

identical results. 

3,2 The Pitman and Morgan Approaches. 

Let X and Y be correlated variables from a normal 

distribution whose joint probability density function is given by 
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2where J.l1 and 0'1 are the mean and variance for X and similarly J.l and2 

a~ are the mean and variance for Y. p is the correlation coefficient 

between X and Y. 

Let (X1 ,Y1), ... ,(X ,Y ) be pairs of observations from this n n

population. We need to define the sample means 

x rX./n, Y= rY./n
1 1 

and the sample variances 

and the sample correlation coefficient 

Then the joint probability density function for the n observations is 

(3.1) 
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-~ < ~1' ~2 < ~, a < ai' a2 < ~ -1 ~ p ~ 1. 

If we put 

we know that the correlation between Ui and Vi is zero. We can write 

their sample correlation coefficient as 

[CUi -u) (Vi-V) 

R 

{[CU. _U)2 .[(V. _v)2}~

1 1 

= 


We put w = si/s~ and ¢ 

w-¢ 
R = 

{(w+¢)2 - 4r2w¢}~' 

From this form of R, Pitman(1939) was able to write down a 

more appropriate test criterion for ¢ since the distribution of R is 

known. This is 

R(n-2)~ 


t = (1-R2)~ 


(w-¢)( n-2 )~ 
= 

(4C1-r 2)w¢)% 
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which has a 'Student's' t distribution with n-2 degrees of freedom. 

Morgan(1939) used the likelihood ratio method to arrive at 

the same criterion. For if we assume that the null hypothesis 

Ho:af=a~=a2 is true, the joint probability function for the n pairs of 

observations from (3.1) is 

(x-tIl )(y-tI2) 

2p 2 + 


a 

Hence the likelihood ratio is 

n/2 
} 

Thus A depends on R alone which led Morgan(939) to the 

test cdtedon 

R(n-2)% 

t = 

O-R2 )% 


as for Pitman(1939). 
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The t thus derived , is the Pitman-Morgan test stati stic . 

Ho: a = a is rejected if It I falls outside the desired probability
1 2 

level. 

3,3 The Conditional Approach. 

In both approaches above, it was necessary to derive a test 

either free of or independent of the accessory parameter p. This is 

inevitable for any adequate test criterion to be derived. Therefore in 

the conditional approach, accessory parameters are eliminated through 

conditioning on their respective sufficient statistics. The test 

statistic is derived using methods suggested by Williams(1982) to 

overcome the difficulty of conditioning on sufficient statistics which 

depend on the parameter of interest (i.e. on the structural 

parameter) . 

For brevity, we put 

where 

2 2Var(Y) = a /(1-p ).
2

We shall assume (without loss of generality) that X and Y 

have zero means. (We may note in passing that if the means of X and Y 

were /.11 and. /.12 (both nonzero), they could be eliminated either by 

conditioning on their sufficient statistics, Xand Y, or by writing 
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X' = X-~l and y' = Y-~2 if ~1 and ~2 are known. X' and Y' are pivotal 

quantities ancillary for ~1 and ~2 respectively). The bivariate normal 

density 

22 y.1 x. 
+ ..1:)}exp{- -(-1 ­ 22 a1 

2 a2 

becomes (for the joint probability function of T11 , T22 and T12 ) 

(3.2) 

k being a constant. Clearly, t12 is sufficient for p. We apply 

Madow's(194S) method for densities of sufficient statistics to derive 

the marginal distribution of t For then12 . 

the second factor on the right hand side being free of p upon 

conditioning on T12 = t 12 . Let p have a specific value, Po = 0, say. 

Then 

(3.3) 
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The marginal density of T12 is, from (3.2) and (3.3), 

But 

n 2 

T12 = [X.y, ~ Xl /[Yi'


111 

So for p = 0, T12 is distributed as a product of a normal and an 

independent X variate, and thus has the Bessel distribution given by
n 

where K(n-l)/2(t12Io lo2 ) is a Bessel function. Therefore the marginal 

density of T12 in (3.4) is 

(3.5) 

a non-central density function. The conditional density of (Tll , T ) 

given T12 = t12 is, using (3.2) and (3.5), 

22 
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(3.6) 

where 

The conditional density in (3.6) can be written as 

c (3.7) 

We reparametrize with ¢ 

is sufficient for the accessory parameter ¢ while S also depends on 

the structural parameter ~. This means that if we attempt to condition 

on S to eliminate ¢, the differential element in the conditional 

distribution given S will depend on ~. For the difficulties involved 

in this, we refer to Kalbfleisch and Sprott(1970). We shall apply the 

procedures developed in Williams(1982) to overcome this problem. Using 

these procedures, an ancillary statistic for the accessory parameter ¢ 

shall be derived as a statistic independent of S. This ancillary 

statistic then becomes the basis for inference about ¢. 

We obtain the 'marginal' density of S. Write T = T11 so 

that T22 = (S-T)/~. It is easy to see from (3.7) that 
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where 

-¢s/2cec' = ----,.--~=------=-=~__,;-~~~~~~~_c=_--------

Since this is a density, 

and so 

It - sl2l 

The 'marginal' density of S is therefore 

t 2 _ ¢t2 )(n-3)/2 dt(ts 12 

= 2c' f {(s/2+t)(s/2-t) - wt2 }(n-3)/2 dt
12 

a 

(s2/4 - ¢t2 l
12 

t 22c' f (s2/4 - - Wti2)(n-3)/2 dt. 

a 
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If we put 

T 

then 

1 

h
l

(s) = 2c' f (S2/4-~ti2)(n-3)/2 (1_u2)(n-3)/2 (S2/4-~i2)~ du 

o 

2and letting Z = U , it is easy to show that the 'marginal' density of 

S simplifies to 

where P is the beta function. Hence the conditional density of T given 

T12 and S is 

(t(s-t) - ~t2 )(n-3)/2
12 

Putting 

it is easy to see that 
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(1-v2) (n-3)/2 

t1 (~, (n-l )/2 ) 

As t runs from 	 0 to to' v goes from (s/2)/(s2/ 4 Wti2)~ to 

2 2 ~ (to - s/2)/(s /4 Wt12 ) so that the conditional distribution 

function of V given T12 and S varies with (t - s/2)/(s2/4 - VJti2)~ 

alone. Therefore (t - s/2)/(s2/4 - q'Jt2 )~ (or a function of it) is12 

independent of T12 and S, sufficient statistics for the accessory 

parameters, p and ¢, and consequently is independent of the accessory 

parameters. Williams(1982) therefore suggests that inference about q'J 

be based on such a statistic. It is easy to see that 

t - s/2 

In our earlier notation, w = tll/t22 and r2 

this statistic simplifies to 

+ (w - q'J)/(4wq'J(11{1 


so that the conditional distribution function is a function of the 

term 

(4wq'J(1 -

Therefore, inference on the variance ratio q'J is based on either 
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(n-2) ~ 2(W - l/J) 
t = 

(4wl/J(1 ­

which has a Students' t-distribution with n-2 degrees of freedom 

(Cramer, 1945, page 400-401) or alternatively on 

(n-2)(w - l/J)2 
F = 

(4wl/J( 1 ») 

which has F-distribution with 1 and n-2 degrees of freedom. These are 

the Pitman-Morgan test statistics. The null hypothesis on l/J is 

rejected if the t (or F) value exceeds the required level of 

significance obtained from their respective tables. 

3,4 Conclusion. 

The Pitman-Morgan test is therefore a conditional test and 

the conditional approach is an appropriate alternative approach to 

deriving the test for variance ratios in a bivariate normal 

distribution. A comparison, particularly with Morgan's(1939) 

likelihood ratio approach, is interesting. The likelihood ratio, being 

minimal sufficient, summarises all the available information in the 

data about the parameter of interest. Since the resultant test 

statistics in both our cases are identical, we conclude that 'no 

information' is lost to the ' marginal' distribution of S through 

conditioning, in our approach. Nevertheless, the 'marginal' 

distribution of S depends on l/J. 

We have used the word 'marginal' loosely in reference to 
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the density h1 (5), More correctly, h1 (5) is the conditional 

distribution of 5 given T12 = t 12 , 

Williams(1982) cited the Pitman-Morgan test as an example 

of inferences which cannot be derived based on a test for independence 

between sufficient statistics (for the accessory parameters) and 

ancillary statistics(for the accessory parameters). In our work T12 

and S are sufficient for the accessory parameters p and ~ respectively 

while the resultant statistic (t - s/2)/(s2/4 - tti2)~ is ancillary 

for both p and ~ by virtue of being independent of T12 and 5. Thus the 

work in this chapter affirms Williams'(1982) conditional procedures in 

application and proves that contrary to his comments regarding the 

Pitman-Morgan test, this test can be derived as a test for 

independence between sufficient statistics and ancillary statistics. 

The conditional inference theory in which we test for 

independence between a sufficient statistic for the accessory 

parameter and a statistic independent of the sufficient statistic (and 

therefore ancillary) has developed from Basu's(955) theorem. 

Basu' s(1955) theorem established the equivalence in general of an 

ancillary statbstic for a parameter 8, say, and a statistic 

independent of a sufficient statistic for 8. 
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4. THE ANALYSIS OF CONCURRENT REGRESSIONS. 

4.1 Introduction. 

The theory of linear regression concerns the prediction of 

a random variable Y using information obtained by observing another 

independent (or concomitant) variable X, where X and Yare linearly 

related. Consider several sets of data observed on such (X, Y) under 

varying conditions. Sometimes it happens that the resultant lines have 

different slopes but are concurrent, i.e. all the straight lines pass 

through some common fixed point, (~,~) say. The point (~,~) is called 

the point of concurrence while we refer to the lines as representing 

concurrent regressions. 

The analysis of concurrent regression lines first received 

attention in Tocher(1952) and Williams(1953). They developed test 

procedures and methods for constructing confidence limits for ~ and ~, 

the abscissa and ordinate of concurrence respectively. That analysis 

received further clarification in Williams(1959, page 137-149). Follo­

wing the analysis in Williams( 1959), we show that their work is an 

application of conditional procedures. 

The analysis in Williams(1959) deals with a special case in 

which there are equal subsample sizes (for each set); and for which 

the dependent variable Y is observed for the same values of the 

independent variable X in all the sets of data, but under some varied 

conditions. Sections 4.3 and 4.4 describe and discuss the analysis of 

concurrent regressions without these restrictions; this general case 

has previously received no attention. 
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We shall now introduce some notation relevant to our 

discussion. Assume there are m sets of data, each set with n. obser­
1 

vations. The observations shall be denoted with (X .. ,Y .. ), j=l, ... ,n.;
1J 1J 

i=l, ... ,m; where Y .. shall be assumed to come from a normal population
1J 

such that 

E(Y .. ) = ." + fl·(X. ·-0,
1J 1 1J 

Thus Yij is the jth value of Y in the ith set, corresponding to Xij , 

th th - ­the j value of X in the i set. Y. and X. shall denote the mean 
1. 1. 

values of the V's and X's in the ith group. We further define: 

L y .. (x .. - x. )
. 1J 1J 1. 

J 

- 2t. = L (x .. - x. )
1 1 J 1. 

L y .. (x .. - x. )
j 1J 1J 1. 

b. :: 
1 L (x .. - x. )

1J 1.j 

(b. is the least squares estimate for fl. in the ith set of values). In 
1 1 

respect to the concurrent regressions, the corresponding definitions 

are 

p.* L y .. (x.. 0 
1 1J 1J 

The definition for b~ the regression coefficient for the ith concu­
1 ' 

rrent line shall be presented later. 
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In the specific case of Williams(1959), n. =n and x ..=x. for
1 1J J 

all , ... ,m. Consequently, for this case we shall write p~ in place
1 

of P:. t in place of t i , t' in place of t: and bi in place of b:. For 

brevity we also put 

J = n[ (y. y )2 
1.i 

n 

K = [ y. (p.-p)


1, 1t i 

and 

n - 2
L = -[ (Pi -p) .2 it 

4,2 Conditional Procedures In The Analysis of Williams(1959), 

Given several sets of data on (X, Y) whose concurrence we 

wish to investigate, an appropriate procedure for analysis is: 

(i) to test for difference in the slopes of the regression lines; 

(ii) where the slopes do not differ significantly. the lines are 

assumed to be parallel. Then we test for difference between lines, 

i.e, whether the distance between the lines is zero at any fixed 

value of X; 

(iii) if in (i) the slopes differ significantly, we test for the 

concurrence of the regression lines, We require a test for the 

departure from concurrence. This is essentially the analysis 

discussed in this chapter. 
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We identify two possible situations in (iii): 

(a) when S, the abscissa of concurrence is known but ~ is un­

known (we shall write S=So in this case). 

(b) when both S and ~ are unknown. 

(a) Since So is known, ~ is the structural parameter while Pi is inci­

dental (we use 'incidental' instead of 'accessory' to describe the 

p. 's because the p. 's increase in number with the sets of data). Thus 
1 1 

the test for departure from concurrence is equivalent to a test for 

departure of the regression lines from ~ at x .=s : and this test 
J 0 

procedure needs to be independent of the incidental parameters, p"
1 

i=l, ... ,m. 

It is easy to see that if the regression lines are concu­

rrent, the point of concurrence (s ,~) must lie on the mean regressiono 

line for all the sets of data. This line is 

-
y = y + 6(x. x ).

J 

Putting Xj=so' obtains for us an estimate of the ordinate of concurre­

nce, ~, as 

+ 6(s x ).
o 

But obviously Yc is the mean for the quantities 

y. + b. (s - X 
1. 1 0 
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-y, i=l, ... ,m;
1. 

and since ~ is known, it is easy to show that a 

E(y. ) = n
lC 'I' 

Yic is evidently sufficient for 1'/ but ancillary for Pi' The departure 

of lines from 1'/ at Xj=So is reflected in the variations of Yic'S from 

Yc: and this test is free of the incidental parameters, Pi' , ... ,m. 

Since 

Var(y, )
lC 

nt 

where t' = [(x .-S- )2 , the sum of squares for departure from a ) a 

concurrence is 

(S- -x )2 _ 2 (s -x )
0a [(PI' _p) + 2_----'_ [y, (p, -p)}

t 1. 1 

t 
- 2 = { J + 2(s -x )K + (So-x) L} (4.1)

t' a . 
a 
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on m-l degrees of freedom. 

Only if this departure is not significant, may we carry out 

an analysis of the concurrent regressions. Then the sources for varia­

tion in the concurrent regressions will be the difference among the 

regression lines, the mean regression and the ordinate of concurrence. 

Assuming concurrence, variations (or differences) in concu­

rrent regressions are reflected in the differences between slopes. The 

parameters of interest will now be the $, 's (n is accessory). Let us 
1 

define 

I: (y, , - y ) (x ,-s )
1J C J 0j 

b: = 
1 I: (x , -s )2 

0J 

p: + ny (s -x)}
1 c 0 = (4.2) 

t' 
0 

Clearly 

1 
E(b:) = { nI:(x,-s ) + $,I:(x,-s ) 2 - nI:(x,-s ) }

1 J 0 1 J 0 J 0t' 
0 

b: is a sufficient estimate for $, and consequently the test for 
1 1 

difference in concurrent regressions is based on the sufficient 

statistics, bi. But from (4.2), bi and pi are statistically equivalent 

so that this test may very well be based on 

p~ = p, + ny, (x -s ).
1 1 1.. 0 
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Since 

the appropriate sum of squares for difference in concurrent regre­

ssions is 

_ L(P~ )2 
t' i 1 

o 

1 - 2 - 2 - 2 - ­{L(P1'-P) + 2n(x -s )L(Y' -Y )(p.-p) + n (x -s ) L(Y' -Y
t' . 0 1... 1 0 1. 

o 

= 
1 

t' o 

{ (4.3) 


on m-1 degrees of freedom. 

The mean regression sum of squares (for concurrent regre­

ssions) will then be 

(4.4) 


on 1 degree of freedom; and for the ordinate of concurrence, 

Y~mnt 
t' 
o 
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on 1 degree freedom. This latter sum of squares is for departure of 

Yc from O. However, in most of the problems we would require the sum 

of squares for departure of y c from some hypothesi zed value TJ a of TJ. 

This is 

(4.5) 
t~ 

a 

The analysis may be summarised as follows: 
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ANOVA Table 4.1 

Source 

Mean Regression 1 

Ordinate of Concurrence 1 

Difference in Concurrent 

Regressions m-1 

Departure from Concurrence m-1 

Sum of Squares 

(4.4) 

(4.5) 

(4.3) 

(4.1) 

Total Variation due to 1 
Regression 2m 

t' o 

Residual m(n-2) by subtraction 

2TOTAL mn y .. 
1Jij 
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-
The analysis in table 4.1 is evidently based on y. and PI" 

1 • 

statistically independent variables. These in turn are transformed to 

Yl'C (ancillary statistic for 8,) and p~ (sufficient statistic for e·).
III 

Moreover, 

~ Cov(p~,y. ) + (~ -x)Cov(p~,b.)
1 1. 0 1 1 

(4.6) 

(b) If both sand ry are unknown, we test for an additional hypothesis, 

H :s~s . When H is not true, p~ and y. will no longer be sufficient o 0 0 1 lC 

and ancillary respectively for 8i . In fact, if we put a=s-so' 

and 

ry + 8·a
1 

so that Yic varies with 8 i , Under Ho' pi and Yic will be sufficient 

and ancillary respectively, for 8. similar to what we had in case (a).
1 

By comparison with the discussion on linear functional relationships 

in Williams(1976), we know that the sample correlation between p~ and 
1 

y. will be centrally distributed under H and free of 8 .. otherwiselC 0 1 

E(Yic) depends on so that the sample correlation has a non-central8i 

distribution which depends on 8" 
1 
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Diagram 1 may clarify this. It shows how Yic varies with e i 

and consequently the sample correlation coefficient is non-centrally 

distributed when H is false. 
o 

Diagram 4.1: 

/
Ytc t-----------.-----~-----...,. 

/ 
'jl.(' .------- ­ • 

~K.. i 

--­
-;j 

...,,// 

/ 


The test for H : ';='; may therefore be designed as a test 
o 0 

for the centrality (or non-centrality) of the distribution of the 

sample correlation between p~ and y .• Equivalently. we may test for
1 lC 

the significance of the regression of yic on pi. In this problem the 

ei's are incidental parameters. 

Under H , p~ is sufficient for e.. But when H is not true,o I I 0 

conditioning on p~ does not eliminate e .. (In the same way y. will 
I I IC 
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not be anci 11ary for 8 ,), Thus the regression of y, on p~ wi 11 be 
1 lC 1 

significant, i.e. the regression sum of squares will be non-centrally 

distributed since ECy, Ip~) depends on 8, (Williams,1976; Rao,1973,
lC 1 1 

page 264-265). This sum of squares may be appropriately called the sum 

of squares for the abscissa of concurrence, and is given by 

nt{ L 

=------~--------~~~------~--- (4.7) 
22 tt'{ n(~-x ) J - 2(~-x )tK + - L } 

n 

Clearly, the regression sum of squares in (4.7) will be 0 

when ~ is replaced with its maximum likelihood estimator. Therefore an 

estimate of ~ is obtained by equating (4.7) to 0, Le. 

C4.8) 


Letting Xc be the estimate for ~ from (4.8), we write z=xc-x . From 

(4.7), equation (4.8) simplifies to 

so that 

2 
(tL _ J) ± {( J + ) - 4~ ( JL - K2 )}~n n 

(4.9) 
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One root from (4.9) will maximise, and the other minimise the sum of 

squares for departure from concurrence (for unknown S ): we requireo 

the latter. This sum of squares may be obtained as a difference from 

the ANOVA table 4.2, and is 

(4.10) 


Since the numerator is free of S, we need x that maximises the deno­c 

minator, i.e. the sum of squares for difference in concurrent regre­

ssions (as indicated in (4.3)). 

The analysis is as follows: 

ANOVA Table 4.2 

Source Sum of Squares 

mnt 
Ordinate of Concurrence 1 (Yc T)) 2 

t~ 

Abscissa of Concurrence 1 (4.7) 

Departure from Concurrence m-1 (4.10) 

TOTAL 


The test statistic for H :s=s is (4.7)/(4.10).o 0 

http:4.7)/(4.10
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From Williams(1973), we may conclude that the variance of 

x (the estimate from (4.9) and (4.10)) is asymptotically the recipro­c 

cal of the second derivative (with respect to ~) of this test stati ­

stic at s 	 . This is 
o 

4(m-2)n {n(s 
o 
-x

• 
)K - tL + nJ} 

Derivations in this specific case require constant weights. 

When we allow the subsample sizes, ni , to vary from set to set, we 

need varying weights as well. This is the general case discussed in 

the following section. 

4.3 	The General case. 

The analysis in section 4.2 placed restrictions on n. and 
1 

the independent variable, X. Over the various sets of data, we now 

allow for: 

(i) variation in the subsample sizes, i.e. j , ... ,ni : 

(ii) the values of the independent variable X to vary from set to 

set. 

The observations are (Xij,Yij ); j=1, ... ,ni : i=l, ... ,m. 

We do not discuss the case when So is known since the ana­

lysis in section 4.2 (a) applies to it. The only variation from (4.1) 

and (4.3) is that in this case the weights will vary with 1. The 

weights are still chosen as inversely proportional to the respective 

variances. 
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Assume ~o is unknown. We redefine some of the terms. 

Let 

y. + b.(~-x. ), i=l, .... m. (4.11)
1. 1 1. 

As before, 

E(y.* ) .,., + {3.0 (4.12)
1C 1 

so that E(Yic)=""* and Yic * is ancillary for {3i' when Ho:~=~o is true. 

Furthermore, 

2 2 

Vady.* ) 
0 

-+ (~-x. )2 
0 

1C 1.n. t. 
1 1 

0
2 t~ 

= 1 

n.t. 
1 1 

(t i and t: are as defined in section 4.1). Since varCy;c) varies with 

i, we define the weighted mean *of the Yic's as 

Lwi =1. We choose Wi to be inversely proportional to *Var(Yic) (Hoel, 

1971, page 128-129 and page 195-196); i.e. 

n.t.~1 1 
W. = -*- n.t. 

1 t. L~ 

1 t~ 


1 




- 70 


The regression coefficient for the i th concurrent regre­

ssion line is defined as 

[ * (Yij-Yc)(xij-~)
j

b~ 
1 [ (x. ·-0 

j IJ 

1 * ­p.* + n.y (~-x. ) L (4.13)
1 1 C 1.t.* 

1 

Since 

E(Pl')* :: [ (x. ·-O(n + p.(x. -s ))
IJ 1 1. 0 

= p.t.* + n.n(x. -s) + P.n.o(x. -s), (4.14)
1 1 1 1. 1 1 1. 

then 

o 
Pi + * (n.P.(x. -0 + n·(s-x. ) [w.p.)t. 1 1 1. 1 1. 1 1 

1 

= p.
1 

and b: is sufficient for Pi' if Ho:o=O is true. 

The problem then is to design an appropriate test statistic 

for Ho:o=O. As we show in the following section, the choice of suita­

ble weights is the problem we face here. 
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4.4 The Analysis of The General Case. 

The structural parameters in the problem are sand q, while 

the P, 's are incidental. If H is true, y~ will be ancillary for Pl' ,
1 0 lC 

while b~ is sufficient for P, • 
1 1 

A comparison with table 4.2 enables us to write the sum of 

1 lC t. 1 lC 1 1. lC C* 

squares for the ordinate of concurrence as 

L w.(y* -q) 2 •
1 C 

(4.15) 

It is clear from (4.13) that in general p: will not be 

equivalent to b~,
1 

being a different linear function of b~ in 
1 

each 

group. Moreover, Cov(b.,y. * * )10.
1 lC 

Por, 

Cov(b.* ,y,* ) 
1 

{C *ov(p.,y,* ) + n.(s-x. )Cov(y.* , *y ) }, 

1 

Prom (4.11), 

Cov(p.* ,y. * ) = Cov(p,* ,y. - ) + (s-x.- )Cov(p.*,b.)
1 lC 1 1. 1. 1 1 

= o. 

Also 

a2t*. 
1Cov(y.* ,y*) = W.--. 

lC C 1n.t. 
1 1 
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Therefore 

2a w, (~-x. )
I 1. 

So it is misleading to design a test for H : ~=~ on the assumptiono 0 

that ~o annihilates COv(b:,y:c)' although it seems reasonable that b: 

and y. * should be independent (or uncorrelated) at (~ ,~ ) and corre-IC 0 0 

lated elsewhere (diagram 4.1). 

However, we know from (4.12) that E(y.* IC ) depends on PI' so 

that the arguments in section 4.2 (b) apply here; i.e. although 

* * )=0, the sample correlation between p.* and *CorrCp.,y. y. will beI IC I IC 

non-centrally distributed, and depends on p. when H is not true. The 
I 0 

test for the non-centrality of this distribution (i.e. the test for 

Ho:~=~o) is modelled as a test for significance of the regression of 

y.* IC on p* I.. The regression sum of squares will be non-centrally 

distributed (and hence the regression is significant) if the 

incidental parameters, the Pi's, are not eliminated from the 

conditional model (conditioned on p:). In turn, this shows that p: is 

not adequately sufficient for 8. or H :~=~ is false (Williams, 1976). 
I 0 0 

The regression sum of squares, also called the sum of 

squares for abscissa of concurrence, is 

{ [k. y. * (p.* -p -* ) }2
I IC I (4.16)* -* 2[ k. (p. -p )

I I 

where 
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-* * p = [c.p. ,
I I 


1 

c, = 

I 1 
t~ L(-)

I t~
I 

The choice of the weights, ki . will be discussed later. 

It follows, by difference, in table 4.3 below, that the sum 

of squares for departure from concurrence will be 

* * 2 * -* 2 * 2[[w.(y. -y) ][[k.(p.-p)] [[ k.y. * -* (p.-p )]
I IC c I I I IC I (4.17), * ::::.* 2 

[ k. (p.-p )
I I 

The analysis is as follows: 

ANOVA Table 4,3 

Source Sum of Squares 

Ordinate of Concurrence 1 (4.15) 

Abscissa of Concurrence 1 (4.16) 

Departure from Concurrence m-2 (4.17) 

* 2TOTAL m [w·(y·-TJ)
I IC 
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The sum of squares in (4.16) attains the value zero when ~ 

is the maximum likelihood estimator. Therefore we estimate ~ from o 

* *-* [ k.y. (p.-p ) = O. 	 (4.18)
1 1C 1 

This simplifies to 

[k.(Y. - b.x. + ~b.)(p. - [c.p. + ny. x. - [c.n·Y· x.
1 	 1. 1 1. 1 1 1 1 1. 1. 1 1 1. 1. 

~(n.y. [c.n·Y.)) = O.
11. Ill. 

If we put 

r. = y. - b.X. 
1 1. 1 1. 

p. - [c.p. + n.y. X. - [c.n.Y· x. 
1 1 1 1 1. 1. 1 1 1. 1. 

t. = n.y. - [c.n·Y· I
1 1 1. 1 1 1. 

(4.18) may be written as 

[k.( ~ 
2b.t. - ~(r.t.+b.s.) + r.s.) = 0,

111111111 

and the estimate is 

2 	 ~[ k. (r. t .+b. s. ) ± {[[ k.(r.t.+b.s.)] - 4[[ k.b.t.][[ k.r.s.]}
11111 11111 III III 

2[ k.b.t. 
III 

There are two roots to equation (4.18). But at ~=~ , the sum of 
o 
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squares for departure from concurrence (in (4.17)) will be minimum. 

Hence we take as estimate for ~ the x which minimises (4.17).
c 

Attention shall now be given to the choice of ki' It seemed 

appropriate to choose weights, ki' to maximise the correlation between 

y.* and k. p..* However, it became evident that such flexibil i ty in 
1C 1 1 

choosing the weights permits ki to be chosen making the correlation 

* *between Yic and kiPi' unity. 

A practical and reasonable approach is to work with the 

* * * ratios Pi/ti (=qi' say). From (4.14) it is easy to show that 

n.ry(X. -~) + p.n.o(x. -~)
1 1. 1 1 1. .p. + 

1 t~ 
1 

and so q*l' will not be too greatly affected by the spread in the x .. 
1J 

values, while simultaneously it reflects the variations in the slopes 

of the concurrent regression lines. 

In place of the regression sum of squares in (4.16), we now 

have the regression of y.* on q.* with w. as the weights. This sum of
1C 1 1 

squares is 

* * * 2{L w. (y. - y )q. }
1 1C C 1 

'\ (* _ q-*)2L w. q.
1 1 

where 

-* * q = L wiqi' 
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Consequently, the sum of squares for departure from concurrence (i.e. 

in place of (4.17», shall be 

* * 2 * -* 2 * * *}2{[ w.(y. -y) }{[ WI' (qI·-q ) } - {[ w.(y. -y)q.
1 IC C 1 IC C 1 

~----=.-~~ -* 2 
[ w. (q.-q )

1 1 

The remaining sums of squares in table 4.3 remain unchanged. 
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5, AN ASYMPTOTIC PROPERTY OF THE PARTIAL LIKELIHOOD. 


5.1 Introduction. 

Neyman and Scott(1948) pointed out that when the number of 

accessory parameters in the distribution of the population sampled 

increases to infinity with the sample (though the structural 

parameters be finite), the method of maximum likelihood will yield 

inconsistent estimators. Nevertheless the likelihood theory remains so 

relevant and useful in statistical inference that it is tempting to 

consider modifications which allow an application to this problem. 

Much discussion of this question is available in the Iiterature, 

notably that of Andersen(1970,1973) and Kalbfleisch and Sprott(1970) 

among others. Cox(197S), in a bid to reduce dimensionality, has 

introduced the 'partial likelihood.' It is desirable that the partial 

likelihood, which would then be the basis for our inference, be free 

of the accessory parameters. 

Let Y, the observed random variable, be such that it can be 

transformed into a sequence 

We may then rewrite the full likelihood as 

);8), ~ f(Sjlx(j) ,s(j-1);8), 
j=l 

where 
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and e € e, an open subset is the vector of parameters. The 

product 

m 
IT f(s .Ix(j) s(j-1) '8)

J ' ,
1 

is called a 'partial likelihood.' As aforementioned, it is useful if 

this likelihood depends only on the structural parameters and not on 

the accessory parameters. Furthermore, marginal and conditional 

likelihoods are special cases of the partial likelihood. The partial 

likelihood will be identical with the marginal likelihood if the 

sequences of X's and S's are independent; and it is identical with the 

conditional likelihood if and only if S. is independent of 
J 

(x j +1 ,X j +2 ,···)· 

Cox(1975) further points out, without proof, that certain 

useful asymptotic properties of consistency and asymptotic normality 

should hold for the partial likelihood. The following work is a 

contribution toward formalising these results. It is an extension of 

Sweeting's(1980) results on the maximum likelihood estimator. It will 

also be shown that these results are appl icable to the marginal and 

conditional likelihoods. In particular, work in this chapter aims to 

establish the consistency of maximum likelihood estimators from these 

likelihoods under very general conditions. 

~2 Definitions And Conditions. 

tWe define Pe, a probability measure on the measurable space 
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(Xt,At ), t being either discrete or continuous, such that P~ is 

(absolutely) continuous with respect to At' a a-finite measure. It. is 

assumed that the density 

has second-order partial derivatives for all 8 £ B. 

Let the corresponding logarithm of the partial likelihood 

be 

(5.1) 

The superscript 'p' will refer to terms derived from the partial 

likelihood wherever it appears. 

Moreover, we shall write 

(5.2) 


The symbols ---'7) and shall respectively st.and u 

for uniform convergence and uniform weak convergence in compact 

subsets of B. 

Definition 5.1: 

A sequence {gnCs)} converges uniformly on a set E if and 

only if given £>0, we can find no such that 
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g(s) I < € 

for all n~n and I s € E. o 

Definition 	5.2: 

Let P and P , n~l, be probability measures on Borel n,s s 

subsets of a metric space, which depend on s, and C be the space of 

real bounded uniformly continuous functions. Then 

P n,s 

in s if and only if 

f udP n, 

uniformly in s for all u € C. 

Let r be the matrix (81"" ,8k ) with 8i € 8, i = 1, ... ,k. 

We define the norm of a matrix A denoted by IAI, as 

Define the information matrix 

(5.3) 


i.e. minus the second derivative of (5.1): and assume the following 

conditions hold: 

Cl: Some nonrandom square matrices A (8), continuous in 8, exist witht 
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and such that 

where PCWce) > 0) = 1. 

C2: For all c > 0, 

the sup being taken over the set 

and Ik is the identity matrix. 

in probability, where the sup is taken over the set 

C3: The partial probability measure p~,t is Cabsolutely) continuous 

with respect to At. 

5.3 	The Main Results. 

In the proofs of the results, it is assumed that 
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second-order partial derivatives of if. exist and are continuous a.s. 

for each Oe8. In addition assumptions Cl - C3 will be assumed to hold. 

Define 

(5.4) 


Then 

Theorem 5.1: 

({w(onY:! Z , w(e» 


where Z d= N(O,Ik ), independent of W(8). 

Proof: 

Wherever our reference is clear, the fixed argument e is 

dropped. Thus we write Wfor Wee). 

Let s e ~ and ¢t et + {At-1 }T s, 0t --~ 8 as t ~ ~. 

Since At-1_~ u 
0 by Cl _ some to ex such that wherever 

j 

e and ¢t e 8. 

Using the Taylor expansion series about 0t­

J 

where 

Putting 
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(5.6) 


and taking exponentials in (5.5), we have 

(5.7) 

But from the definition of ¢t above, 

by (5.1), (5.2) and (5.4); and similarly by (5.3) and (5.6), 

Hence (5.7) may be written as 

Therefore we have 

(5.8) 

But we know 
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by c1 and C2. 

ii) gn(s) -···--4 g(s) in s if and only if g (s ) --~ g(s) for 
n n 

every sequence {sn} such that sn ) s. 

iii) Sweeting(1980) has proved that the distribution GO of W(O) 

so constructed is continuous in O. His lemma 3 applicable 

here with our assumptions since no conditions unique to the 

full likelihood are used in its proof. 

So Vt ====~>W under either {Btl or {~t}. Given 0(£(1, we may choose K 

such that 

P( IW! ~ K) ~ £ .~ 
\ , ' 

I 

,~p
} 

and 

P(!W!=K)=O. 

Furthermore, since Vt >W, and {IXI < K} a GO-continuity set, 

pp,t (I V I < K ) ) Pr ( IWI < K). (5.9)t°t 

We define {Qp,t} as the distributions {Pp,t} conditional on {IVtl < K}
°t 


i.e. Qp,t has the density 
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Let U be a bounded function on the space of all kxk 

Imatrices, M
k

, continuous on IA I < K such that U(A ),-,0 for IAI f K. E~ P 

shall denote the expectation under Qp,t. 

Multiplying (5.8) above by U(Vt.) and integrating with 

respect to At over (IVtl < K), which is permissible because of C3, we 

have by (5.8) and (5.9), 

E(U(Vt)exp{~sTVtS}) 

pp, t ( IV I < K) 
at t 

P(IWI < K) 

= E* (U(W)exp{~sTWsl), (5.10) 

where E* is the expectation conditional on IWI< K. This holds since 

U(W)exp{~sTWSl is a bounded Ga-continuous function. 

But for any Z d= N(O,I k ) independent of W, 
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* TE (U(W)exp{~s Ws}); (5.11) 

dsince when Z = N(O I ), thenk

Using the uniqueness of bilateral Laplace transforms and the weak 

compactness theorem, we have from (5.10) and (5.11) 

with respect to the family (QP' t) of distributions. ' I' here is the 

indicator function. 

But € was arbitrary so that unconditionally 

and 

) 0, from the definitions of Wt , V and ~t.t 

This will be true for all 8 ) 8. As well by lemma 3 int 

Sweeting(1980), the distribution of (W~Z , W) is continuous in e. 

Therefore 
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and the theorem is proved. 

From this theorem, we may get an insight into the 

asymptotic joint distribution of the maximum likelihood estimator ei 
from the partial likelihood, and WtCO). What is required is to relate 

"p p
0t to Xt CO)' 

We define 

Before stating the theorem, we define what we mean by 

uniform stochastic boundedness (u.s,b,) as used in Sweeting(1980). 

Definition 5,3; 

A family (Tt(O)) of At-measurable functions u.s.b. if 

given any €)O and a compact set K in S, there will exist some c and t 
o 

such that 

for all t)t and O€K. 
o 

Sweeting0980, Lemma 4) has shown that for a similarly 

defined Yt(O) from the full likelihood, a local maximum lil{elihood 

estimator exists so that Yt (8) is u.s.b. The proof uses no 

restrictions unique to the full likelihood. So we conclude that some 

local maximum likelihood estimator from the partial likelihood exists 

such that Yi(8) is u.s,b. 
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Theorem 5.2: 

"'p pThere exists a local maximum 8 of llt(8) with probabilityt 

tending to 1 such that 

in probability. 

Proof; 

Again, we shall drop the fixed argument 8 wherever our 

reference is clear. Define 

since the existence of e~ is already known. By the Taylor expansion 

series on Gt , we have from (5.2) and (5.3) 

so that 
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where 

Moreover [At(8)]TC8C8), Hi~k are u.s.b. Therefore from condition 

C2( ii), we have 

But Yi is u.s.b. Therefore the theorem holds on the set Gt . 

Now we need to show that P~' t (Gt ) ----"7 1 for the theorem 

to hold in general. But this follows from Sweeting's(1980, Lemma 4) 

result that ei exists and is therefore finite. 

Therefore the theorem is proved. 

5.4 Application To Conditional And Marginal Likelihoods, 

This section discusses an extension of the above results to 

marginal and conditional likelihoods (Kalbfleisch and Sprott, 1973; 

Andersen, 1970, 1973). A comparison with Andersen'sC1970, 1973) 

asymptotic results is also presented. 

AndersenC1970, 1973) discussed the problem of making 

inference from distribution models which depend on many accessory 

parameters. It is suggested that the accessory parameters r ... r be1 , 'n 
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eliminated by conditioning on their respective minimal sufficient 

statistics, t 1 , ... , tn' Thus inference is based on the conditional 

likelihood 

where 8 is the structural parameter. 

Kalbfleisch and Sprott (1973) give the marginal likelihood 

based on the ancillary for the accessory parameter as f(a;8), a being 

ancillary for the accessory parameter, r. 

The preceeding theory is applicable to the marginal and 

conditional likelihoods. In place of C3, we shall use the more 

specialised: 

C4: 	 The conditional (or marginal) probability measure p~,t (or p~,t) 

is (absolutely) continuous with respect to At. 

Under the regularity assumptions and conditions Cl, C2 and 

C4, the results and proofs follow identically. As indicated previously 

the conditional and marginal likelihoods are special cases of the 

partial likelihood. 

The asymptotic results thus proved considerably strengthen 

those derived by Andersen(1970). We shall note the following 

significant differences in the imposed conditions: 

(i) The maximum likelihood estimator from the conditional 

likelihood is called the "conditional maximum likelihood estimator" 

and Andersen requires that this should be unique (assumption 1.2). The 

\ 

) 
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existence of a local maximum is sufficient for our discussion. 

(ii) Assumption 1. 3 in Andersen(1971) requires continuity in r 

(the accessory parameter) of the mean and variance of the nog condi­

tional likelihood ratio for small variations from the true value of e 

(denoted 8 ) to 8 , Furthermore, this variance must be finite for 
0 0 

T. In our proof, no conditions are placed on this nog likelihood 

ratio. 

(iii) While Andersen(1970) places regularity requirements on 

the third derivative of the nog likelihood (assumption 1.4), no 

restrictions whatsoever are imposed on the third derivative in our 

case. In fact regularity assumptions on the first and second 

derivatives suffice in our proof. 

(iv) Some of Andersen's(1970) continuity conditions in 

assumption 1.5 are comparable to our continuity requirements in C2. We 

require continuity of A (8) and I 
c

(8) in 8, where I 
c

(8) is minus thet t t 

second derivative of the conditional nog likelihood. Note that 8 may 

be a vector parameter with some accessory parameters. It is easy to 

see that since similar conditions to Sweeting's(1980) apply in the 

conditional likelihood situation, At un will often be taken as 

{E[ I~(8)J}~, when it exists. For the purpose of our proof it is not 

even necessary that E[ I~(8)J exist. Therefore whenever A (8) is chosent 

as { IC(8)]}~ our condition C2 will be more general thant 

Andersen's(1970) assumption 1.5. In fact Andersen further assumes that 

E[ I~(8)] is positive in the accessory parameter and the unconditional 

distribution is continuous in the accessory parameter as well. 

(v) In the proof for asymptotic normality of the conditional 

maximum likelihood estimator, Andersen requires that the sequence of 

accessory parameters T1 ' T2 f should be bounded. We impose no such 
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requirement. 

(vi) Andersen's(1970) proof restricted to a discrete 

indexing parameter t while we allow for a continuous indexing 

parameter as well. 

(vii) Although not formalised into an assumption, it clear 

that Andersen's(1970) proofs assume independence among the random 

variables yl'y2' .... Our results here permit dependence in yl'y2' .... 

Clearly then, conditions Cl, C2 and C4 in the present 

proofs in addition to the regularity assumptions we make, relax 

Andersen's assumptions considerably so that the asymptotic results are 

proved in a much more general setting. 

.?5 Examples. \In this section we give some illustrative examples of the j 
partial likelihood. A further example to illustrate (vii) of section 

5.4 is also presented. 

Example 5.1 CBasawa and Prabhu,1981): An example in queuing theory. 

In a one server queuing system partly observed till n 

customers have departed, assume the service times of the customers are 

independent and identically distributed, and independent of the 

interarrival times; furthermore, either the i nterarriva 1 time 

distributions behave erratically or are unobservable. 

Let F and G be distribution functions in a GIGll queue with 

probability density functions f and g, depending on parameters e and if! 

respectively i.e. F is the distribution function for interarrival 
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times depending on e while G is for the service times depending on ~. 

{Uk' kH} and {Vk ' k~l} are the observed interarrival and service 

times. Dn the nth departure epoch so that during (O,D ], we observe n

NA interarrival times (u1 , ... ,uN ). 
A 

The full likelihood for this model given by Basawa and 

Prabhu (1981) is 

NA n 

n f( u . ; e .)} {1 - F(x ; e1 ' ••• , e), )} . n g (v)' ; ~ )


n1 ) J 1 

where 

NA x = X (D ) D L u ..n n n n 1 ) 

the contribution of the incomplete 

arrival interval when sampling is terminated at D . 
n 

a partial likelihood based on the set of 

service times, V, in the sequence {u" v ,}. Clearly this is free of
) J 

the accessory parameters 81 , ... ,8 j and hence avai 1able for i nf erence 

on the structural parameter ~. When the requirement for independence 

of the arrival times is removed, the partial likelihood is still 

available for inference. 

Basawa and Prabhu(1981) further showed that the asymptotic 

properties applicable to the full likelihood also apply to n g(Vj;~) 

(which is essentially the full likelihood for the service times). Of 

course our results hold for this likelihood. 
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Example .5.2: 

Dawid(197S) raised questions about the inconsistencies in 

inference caused by defining sufficient and ancillary statistics in 

the presence of accessory parameters. For data Y let [(Y;w) be the 

probability density function in question with w=(8,~) where ~ is an 

accessory parameter. Assume U and V exist such that 

f(Y;w) f(U:8)f(YIU:~) (S.12) 

and 

f(Y;w) = f(YIV;8)f(V;~); (S.13) 

i.e. U and V are respectively S-sufficient and S-ancillary for 8. 

Then which of f(u;8) and f(YIV;8) should be the basis for 

our inference on 8? To resolve this problem, Dawid(197S) introduced 

the concept of 'likelinesses.' We assume that we can write 

f(Y;w) = A(Y:8).B(Y:~). 

From equations (S.12) and (S.13), this separation already possible. 

Both f(u;8) and f(YIV;8) are, as [unctions of 8, proportional to 

A(Y;8). Any function proportional to A(Y;8) in 8 is called a 

'likeliness' for 8. 

I f we assume the observable variable Y can be transformed 

to 

I 
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the corresponding partial likelihood from this transformation is 

assuming it does not depend on ¢ at all; i.e. the full likelihood 

partitions as follows: 

Whenever such partitioning is possible, the partial 

likelihood is a 'likeliness' for e and as valid a basis for inference 

as the marginal and conditional likelihoods. 

It was pointed out earlier that Andersen's results are 

cted to an independent sequence of random variables yl'y2' •.•. 

Examples in which Yl' Y2 , ... is a dependent sequence, exist such that 

our conditions widen the scope of application of these results. The 

following examples illustrate this point. 

We consider conditional exponential families discussed by 

Heyde and Feigin(1975) in their discussion of Markov processes. 

Let f(X i IXi - ;8) be the conditional probability density1 

function of X. given X. 1 in a time homogeneous Markov process and
1 1­

ine 

n 
n fCX·IX. l:fJ) • . 1 1 1­

1= 
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A 

Then if 8 is the conditional maximum likelihood estimator from L (8),
n n

and I (8) is the conditional information given as 
n 

n dDog L (8) dDog 1(8) 2k
I (8) = I E{ (---- ----) I } 

n k=l d8 d8 k-l 

with ? as the a-field generated by Xl"" ,Xk , kH, then the 
k 

conditional exponential family is characterised by the equation 

for 1 nH. 

In fact the property 

dDog f( x. Ix. 1; 8)
1 1- ¢(8)H(x. lHm(x. ,x. ) - 8J 

1- 1 1
d8 

for some ¢, a function of 8 alone, and H, a function of the X. 's 
1 

alone, defines the conditional exponential families. m(x. ,x. 1) is the 
1 1­

root of (d/d8)f(x·lx. 1;8) O. 
1 1­

If In(8) ~ .., as n ~ 00, the logical choice for A
t 

(8) 

in our conditions Cl and C2 is {I (8)}~ In fact Heyde and Feigin shown . 

that 

I 

a.s, Therefore for this choice of A (8), we require that IHCx _ )t i 1

diverges a.s. This will certainly be so in a wide range of conditional 

exponential distributions. 
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One example of these families is the family of power series 

distributions for the offspring distribution in a Galton-Watson 

Branching process. If Zo"" ,zn are the successive generation sizes, a 

power distribution is of the form 

a)) 

~J__ , j=O,l, ... ; A>O 

fU) 

jwhere ~O and f(A) = L ajA . 

It is easy to see that the offspring mean and variance from 

this distribution are respectively 

H' (A) 2 d.QogA_1 
p = 0 = {-~} 


f(A) dp 


Then 

Z. 
A J 

f(Z·IZ. 1) = 
1 1­ z. 

{fU)} J 

It ly checked that the property 

characterises the power series family. 
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Example 5.4: 

A second example of the conditional exponential families is 

from the estimation of parameter 8 in a first-order autoregression 

X. = 
1 

where c. are independent and identically distributed normal random 
1 

2variables with mean zero and variance 0 , and c, is independent of 
1 

X, l' If g(X) is the density function of c., clearly
1- 1 

f(x,lx. 1;8) = g(x.-8x, 1)'
1 1- 1 1­

and hence 

\ 
!d~og f(x. Ix, 1;8) g' (X 

"1 1­

d8 g(x.-8x. 1)
1 1­

Heyde and Feigin(1975) simplify this equation to 

d 2 x. 
-- kogf(x. Ix. 1;8) = c x. 1 (_1_ - 8) (5.18)
d8 1 1- 1­

x.1-1 

where 

c = -E{ 

(5.18) characterises this family of distributions. 
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