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ABSTRACT .

Conditional inference is a branch of statistical inference
in which observed data is reduced using either sufficient or ancillary
statistics., This often simplifies inference about the parameters. In
comparison to full likelihood methods, conditional inference theory’s
performance still needs validating in many areas. Some of these are

the concern of this thesis,

While the definition of an ancillary statistic in single
parameter models is unequivocal, the presence of accessory {(or nuisa-
nce) parameters in a model presents problems in defining an ancillary
statistic. Statistical literature abounds with definitions of ancilla-
rity in this case. Some of the commonest and most useful of these are
discussed and shown to be interrelated. This facilitates the choice of
the strongest eligible ancillary in a problem, i.e. that which offers

the biggest reduction of the sample space.

The Pitman-Morgan test for variance ratios in bivariate
normal populations with unknown correlation coefficient is shown to be
a conditional test. We condition on sufficient statistics for the
accessory parameters to eliminate them., The test statistic is then

derived as an ancillary statistic for the accessory parameters.

Conditional inference procedures are useful in regression

problems: in particular we discuss the analysis of concurrent


http:facilitat.es

(v)

regressions, Earlier work on a restricted class of concurrent regre-
ssions is clarified using conditional methods. A suggested analysis of

the general case is also pregented.

When & probability model depends on a number of accessory
parameters which increages with the sample size, estimation methods
based on the full 1likelihood will often be incongistent, Using a
partial likelihood instead has been suggested. Local maximum partial
likelihood estimators are shown to exist, and to be consistent and
asymptotically normal under mild conditions. These results also cover
conditional and marginal likelihoods, thug considerably strengthening

earlier results in this area.

In planning statistical inferences, it is usgeful to choose
a sampling scheme which provides only the essential data to our
inferences, Jagers’ lemma proposes very general conditions under which
maximum likelihood estimation from a subset of the data is identical
with that from the full data. However, the lemma is incorrect as
given, We show that an additional sufficiency condition repairs the
lemma. It 1is further shown that this lemma carmot be extended to

general exponential families,
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NOTATION AND SYMBOLS

(1) General

Sections, definitions, examples, equations, propositions
and theorems are numbered in the form k,¢ where k stands for chapter k
and 2 is the numerical sequence of whatever is numbered. eg. Section

1.2 is the 2nd section in chapter 1.

(i1) Symhbols

(X, A . A measurable space where A is a o-algebra on the event
space X,

PC.) . Probability measure on a measurable space.

Qi x Qg 1 A cross-product of parameter sgpaces 91 and 92.

PQR ¢ k dimensional Euclidean space.

G/G/1 : General arrival, general service, single-server gueue,

N(u,oz) : Normal distribution with mean g and variance 02.

rinj : Gamma function,

£7(6) : First derivative of the function f with respect to 8.

£ 78 : Second derivative with respect to 8.

a.s., [ul : For almost all values of u,

[A]T : Transpose of matrix A,

d : "is distributed as"

———3 5 "converges to”

—2:8: 5 . “tends almost surely to"

-——g—~—ﬁ . "tends in distribution to™

~ : "asymptotically tends to”



(vii)

(1i1) Abbreviationg

2og : Logarithm to bhase e.
d.f. . Degrees of freedom.
ANOVA : Analysis of Variance.

contd. ¢ Continued.



1, INTRODUCTICN.

1.1 Conditional Inference,

Statistical inference procedures which base inference on
the conditional distribution given either ancillary statistics or
sufficient statistics are what constitute conditional inference, The
choice to condition on either the sufficient or ancillary statistics
is also very much dependent on the model under consideration., For
example, if the distribution model depends on accessory parameters
(that is, parameters which are not of interest to our particular
problem) in addition to our parameter(s) of interest (we ghall call
the latter structural parameters), it is helpful to eliminate the
accessory parameters. A useful course of action is to condition on
sufficient statistics for the accessory parameters. Or it may happen
that in the course of estimating a parameter, some "information’” will
be lost. Conditioning on ancillary statistics in this case hag been

suggested. This gives us a measure of the precision of our estimate,

Fisher(1925,1934,1935) laid the foundation for conditional
inference by introducing the concepts of ‘sufficient statistics’” and
‘ancillary statistics,’ Sufficient statistics are functions of the
observed data which contain all the available "information’ in that
data about the structural parameter, Ancillary statistics, also
functiong of the observations, are by themselves uninformative or
contain no “information” about the parameter of interest., Formal
definitions for sufficient and ancillary statistics will be introduced
in the next section, In the recent past much work has been done,

notably that of Andersen(i970,1973), and of Kalbfleisch and



Sprott(1970,1973), showing that the conditional approach often yields
identical results to those we get with the full likelihood or even
sometimes, more desirable results, 0f courge there are still many
areas 1in which the effectiveness of conditional inference needs to be
investigated. Some of these are the subjects of this thesis, 0f
particular interest are those distribution models which depend on
accessory paramelers,

This chapter introduces the general definitions of guffi-
cient and ancillary statistics in section 1.2. We further present a
brief overview of the various uges for sufficient and ancillary stati-
stics in inference. In section 1.3, we give an outline of the work

covered in this thesis,

1.2 Sufficient and Ancillary Statistics,

We shall consider a random variable X and a family of all

possible distributions of X, 3. The p.d.f. of X is denoted by f(x).

Definition 2.1:

A statistic S is sufficient for™d if the conditional dis-

tribution of X given S, namely t(x{g), is the same for all f ¢79.

Ifd is indexed by some parameter, #, the definition means
that the conditional distribution, f(x}s) is independent of &, There-
fore when 8 is known, there is no additional ’"information’ contained
in the data, beyond that already contained in S, about 6. It is then
logical to make any inference about 8 on the hasis of S alone, S is

called a minimal sufficient statistic for & if it is a function of any

other sufficient statistic for 6.



Definition 2.2:

A gtatistic U ie ancillary for a parameter, 8, if the

*

marginal distribution of U, f(u), isg independent of 8.

Thege definitiong are unequivocal in a= far as we do not
introduce accessory parameters. But it is in this latter situation
that conditional inference has proved mogt relevant, while simulta-
neously, results obtained in the one parameter case are not automa-
tically applicable to this multiparameter case. As well definitions of
both sufficiency and ancillarity are varied in the literature when
accessory parameters are present, A detailed discussion of ancillarity

definitions is presented in chapter 2.

We may state the problem as follows., Assume that the
probability model under congideration is f(x:8,¢), where 8 is the
structural parameter and ¢ the accessory parameter., If § and U,
sufficient and ancillary statistics for ¢ respectively, exist, we can

write

it

fx(x:8,¢) fs(s;8,¢).f (x:8]) (1.1)

X5

and

fx(x;8,¢) fU(u;Q).fX U(x;8,¢lu). (1.2)

Consequently, we may ask

(a) like Dawid(1975), which of the two models, (x:8]8) 1in

fXIS

(1.1) and fU(u;Q) in (1.,2), is appropriate for our inference?



(b) assuming we choosge fx!c(x;ﬂls), how much “information’ on @

is lost to fS(S:9,¢)?

A related problem ig the absence of an explicit neasure of
information content, Pitman(1979, page 18) gives some examples and
interesting remarks on wuging Fisher’'s information function as a
measure of information showing that it may not actually reflect the
information we want,

We should note the lack of general patterns for constru-
cting ancillary statistics in particular., Coupled with this ig their
possible non-unigueness. Therefore we often have to choeose from

equally eligible ancillaries (Basu, 1964),

Notwithstanding, ancillary and sufficient statistics are
very useful in statistical inference., Fortunately, in the course of
conditioning on an ancillary statistic no information loss is involved
since the ancillary statistic is on its own uninformative about the
structural parameter. From the outset, Fisher(1935) recognized that
the ancillary statistic serves as an index, a measure of the preciszsion
of an estimate we may make of a parameter. To put it another way, the
ancillary statistic will describe the dimension of the sample space
relevant to our problem. An example from Cox and Hinkley (1974)

illustrates this,

Example 2.1:

Assume we observe X such that it is equally likely to come from
2. Z 2 2
1) and N(u,oz), 01 # By

both G% and a% being known. So inference from X will depend on whether

either of the two normal populations, N(u,o



o = o2 or 0%. Pegides P(U=u) = 1/2, u = 1.2. The joint likelihood of

2
1. 2% =)™
E(ZROU) exp{- > }.
20°

Conditioning on U means the population sampled is specified, U being
ancillary. Since we know the population, we do not need Lo consider
the population that was not sampled. Therefore the ancillary statistic
has specified the dimension of the sample space relevant to our

inference.

Sufficient statigtics too play major roles in inference,
gsome of which will be evident in the course of this thesig. Only a
brief informative overview on their roles is given here. Sufficient

statistics are ugseful in the following:

(i) Sufficient statistics may be used to define the best
critical region of a uniformly most powerful test. Lehmann(1959, page
134-136) has ghown that, in the case of the exponential family, it is
possible Lo define uniformly most powerful tests whose test function
is determined by the sufficient statistic. In fact, on the hasis of
the sufficient statistic, Fraser(1956) showed that the sign test is

uniformly most powerful in a nonparametric location (family) problem.

It is known that the critical region for a uniformly most

powerful test ig defined by the likelihood ratio. But the partitioning




of the sample space by the likelihood ratio is sufficient (Cox and
Hinkley, 1974, page 24). Therefore the sufficient statistic defines
the best region by assuming a constant value along the boundary of the
critical regions.

It would seem from Neyman and Pearson(1936) that this
theory cannot be generalised to all distributions i.e. the existence
of a sufficient statistic is 1o guarantee that a uniformly most

powerful test exists.

(i1) In the gpecial case when the underlying distribution
family is complete, Lehmann and Scheffé&(1950) have shown that any
function of a complete sufficient statistic will ke the unigque minimum
variance unbiased estimetor of its expectation., When completeness is
removed, the estimator may not be unique. A short proof of this is
available in Cox and Hinkley(1974, page 258-259), Conversely, 1f an
estimator is minimum variance unbiased estimator for its expected
value, it must be a function of the sufficient statistic. In the cons-
truction of a minimum variance unbiased estimator therefore, it is
advisable to start from a sufficient statistic if it exists., This

result is used in chapter 6.

(iii) Sufficient statistics may alse be used to derive
non-null distributions from null distributions (Madow, 1945: Durbin,
1980). S ig sufficient in the model f(x:8) if

F(x:8) = g(s:8).h(x|s). (1.3)

We assume the marginal density g(s:8) is unknown, Let 8

assume some value 60 and we have



f(x:@o) = g(s;éa).h(x|s). (1.4
From (1.3) and (1.4,

g(s:8)

f(x:8) = f(x;Go). .
g(s;SO)

This technique will be used in chapter 3 to derive the

distribution of a sufficient statistic,

(iv) By far the most common usage of sufficient statistics
is in the elimination of accessory parameters, This will be evident in
the thesis too.

Let f(x:8,1)be the distribution from which the sample is
taken where 1 may be a vector of accessory parameters., I1f the model
admits minimal sufficient statistics for the accessory vparameters,
Andersen(1973) suggests conditioning on the minimal sufficient
statistics to eliminate these parametersg, and proves that the estimate
for 8 from the conditional distribution will satisfy a number of
desirable agsymptotic resultg, We refer to some of these in chapter 5.

So if S is minimal sufficient for r, we have
f(x:8,t) = £(s:8,1).£(x:8]s).
The ingistence on using minimal sufficient statistics is to

minimise the logss of information about 8 through f(=s:8,71),

(Andersen, 1973, page 42).
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Sometimes it happens that the sufficient statistic for 1
depends on 8, the structural parameter, as well, An example of this is
the sgufficient statistic for the variance 62 in a normal population

with unknown mean u, Thig is

52 = Z(xi—u)/n

and if u is the structural parameter, we may not condition on 82 to
eliminate 62. Kalbfleisch and Sprott(1970) have aptly described the
problems involved in so doing.

Bagu(1955,1958) showed that under qguite general conditions
a statistic independent of a sufficient statistic will be ancillary.
On the basig of this, Williams(1982) proposed and described how we may
construct such an ancillary whenever the sufficient statistic depends

on the structural parameter., So if $ is sufficient for 1 and deperds

on 8, the conditional distribution function

X
[ £(u,s:8,1)du

—c0

FC(X;GIS) =

-]

[ £(u,s:8,1)du

s g

ig, irrespective of the value of S, distributed uniformly over (0,1)
and is thus independent of S, Any function of Fc can serve ag our
ancillary for 1 and is thus available for inference.

Durbin(1961) presented an interesting use of sufficient
statistics in the elimination of accessory parameters to test for
goodness~of~fit., Conditioning on sufficient statistics may permit a

compogsite hypothesis to be tested ag a simple hypothesis.



1.9 Outline of The Thesisg,

As indicated earlier, definitions of anciliarity in the
presence of accessory parameters are numerous, In chapter 2, we
present  these definitions, examine them and discuse their
interrelationships. When making statistical inference, thig makes it
possible to choose from the eligible ancillaries in a particular
problem that ancillary statistic which best describes the dimension of
our sample space relevant to the inference. Generally, the strongest

ancillary statistic will be most useful,

Pitman(1939) and Morgan(1939Y9) devised a test for the ratio
of wvariances in a Dbivariate normal distribution with unknown
correlation coefficient, which is widely used today. Chapter 3 will
show that this is a conditional test. (iii) and (iv) in section 1.2
are particularly useful in this derivation, The successful corditicnal
derivation of such an important testing procedure helps to establish
conditional inference as a significant approach to problems 1in

statistical inference.

The analysis of concurrent regression lines first discussed
in the literature by Tocher(1952) is presented in chapter 4 following
the analysig of Williams(1959), It is shown that this analysis is an
application of conditional inference procedures. We shall present a
generalisation of the analysis to cases which Tocher(1952) and
Williams(1959) did not cover, The role of sufficient and ancillary
statistics in the analysis is clarified; in fact, these statistics
form the basis for the analysis, This suggeste that identifying

suftficient and ancillary statistics in regresgsion problems may he a
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useful initial step, and conditional procedures may then be applied to

design an appropriate analysis.

It was pointed out earlier that distribution models with
the number of accessory parameters increasing with the sample size,
present additional problems which cannot be solved by simply applying
the general conditional procedures. The introduction of the "partial
likelihood’ hy Cox(1975) is an attempt to deal with this problem,
Chapter 5 discusses the joint uniform asymptotic normality of the
‘normalised” first derivative of the mpartial likelihood and the
‘normalised information” function. It 1is shown that local maximum
partial likelihood estimators exist and are both consistent and asymp-
totically normal under mild conditions, This result is easgily applica-
ble to the conditional and marginal likelihoods under similar general
conditions to those for the partial likelihood. The conditions given
shall also be shown to generalise results by Andersen(1970, 1973) on

the conditional maximum likelihood estimators.

One of the purposes for using conditional inference ig the
reduction of data using sufficient and ancillary statistics. It is
important that any reduction of data provides only the essential data
to our inferences. This is not always so. Jagers’(1975) lemma asserted
under rather general conditiong that the conclusions should be
identical, This lemma is not true in its generality and a revised
version of it is presented and proved in chapter 6. The revision of
the lemma is essentially to include a requirement of sufficiency. We
congider an application of the revised version of Jagers’ lemma to

problems in Branching Processes and thereby show that the revised
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version of the lemma is not extendable to the general exponential

family,

It is easy to see that although all the chapters fall
under the umbrella of conditional inference, there 1is relative
independence across them. Congequently, it is attempted to make
notations congigtent within each chapter while allowing for some

variation in notation between chapters.
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2, DEFINITIONS OF ANCILLARITY IN THE PRESENCE OF ACCESSORY PARAMETERS,

2,1 Introduction,

The theory of ancillary statistics was initiated by
Fisher(1925) in an attempt to recover some or all lost information in
the estimation of unknown parameters with non-sufficient statistics,
By definition, the ancillary statistics should, of themselves, contain
no information about the parameter of interest since the distribution
of an ancillary statistic must be independent of that parameter. As
already pointed out in chapter 1, ancillary statistics are helpful in
judging the precision of our estimators, When the underlying
probability model sampled depends also on other parameters (not of
direct interest to our particular study, and hence often called
nuisance, incidental, or accessory parameters in the literature)},
defining an ancillary statistic useful for our inference is not
straightforward; many varied definitions have been proposed in the
literature. We shall present the major definitions and discuss how

they are interrelated to place them in the order of their strengths.

First, we need to make a note on the choice of the word

’

'accessory’ in preference to the more common word ‘nuisance.’ We may
talk of a nuisance parameter only for a particular problem: in
general, the word 'nuisance’ is a misnomer. An example of sampling

from the normal population illustrates this point,

Let X be a random variable such that

X d N(u,cz)
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where u and 02 are unknown,

When making inference on u, the variance 02 will be a
‘nuisance’ parameter whose elimination we may desire. However, if the
problem is to make inference on 02, then the mean u is a ‘nuisance’
parameter, The word 'nuisance’ implies uselessness. Yet in each case,
neither u nor 02 is unimportant in the model although it may not be
relevant to our particular discussion,

Therefore, we shall call parameters which are not of

interest in the problem at hand, "accessory’ parameters,

2,2 Definitions,

It has been hinted that the classical definition for an
ancillary statistic is "a statistic whose distribution is independent
(or free) of the parameter (of interest).” Let X be a random variable
with probability density function f£(x:8), 8 being a parameter from the

space @, This definition implies that U is ancillary for 8 if

f(x:8) = fU(u).fc(x;GIu)

for proper probability density functions fU and fC‘ The subscripts U
and C refer to the marginal distribution of U, and the conditional
distribution of X given U, respectively. They will be used in like
manner throughout this chapter and all factorisations will be taken to
be into proper probability density functions.

Now let 8 = (n,B), where n is the parameter of interest
(hereafter called the structural parameter) and 8 is the accessory

parameter: n and B may be vector parameters,
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Fraser(1956) proposed a definition for sufficiency in the
presence of accessory parameters which 1is equally suitable for
ancillarity. Barndorff-Nielsen(1978, Section 4.4) calls it

S-ancillarity.

Definition 2,1: (S-ancillarity)

Let (n,B8) ¢ @, xQ., Then U is (S-)ancillary for n if

1772
f(x:8) = fU(u:B).fC(x;nlu).

It is clear that U is also sufficient for the accessory parameter 8.

Example 2.1:

Let {Yijk}’ i=1,....,m: j=1,...,n: k=1,...,%; mn2=N be a set

of random variables with finite mean such that
E(Yijk) = g+ai+gj,

Then under the usual assumptions (i.e. Zai =0 = Zﬂj),
By, -y, ) =a.

I1f we assume Yijk is from a normal population with Var(Yijk) = 1, then

u, = §i -y has the probability density function

N
. _ o 2
fU(ui,ai) = ¢.exp{ zmz (ui ai) },

where ¢ is a constant. Therefore if Y = (Y Y )

141 " "mng’’
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fY(y;y,ai,Bj) = fU(ui;ai).fC(y:u,ﬁjlui), i=t1,...,m: j=1,...,n.
Ui is ancillary for Bj by definition 2.1,

Although thig definition has the advantage of separating
the parameters completely, and also follows directly from the classi-
cal definition of ancillarity in the single parameter case, it lacks
the wide applicability we need. In most of the examples we give later,
it is clear that definition 2.1 is not satisfied. We need to define an

ancillary statistic with the following properties:

(i) It must be strong in the sense that it facilitates effective
geparation of the parameters, and its distribution should be
functionally independent of the structural parameter. Definition 2.1
has this property.

(ii1) It must be widely relevant in application,

Although property (ii) may be desirable, it can only be
satisfied to the loss (or at least undesirable weakening) of property
(i). The following are among the major definitions in the literature
which attempt to relax definition 2.1 somewhat to permit wider

applicability.
The next definition is due to Andersen{1970,1973, page 99).

Definition 2,2:

U is ‘weakly ancillary’ for n in the presence of the

accessory parameter 8 if given any values U and Bo of n and 8
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respectively, we can find a differentiable function ¥(») such that

W(no)=ﬁo (i.e, 80 is expressible as a function of no) and

i

£ (uing, B, = £ (usn ,¥(n )

1l

fU(u:n,W(n))

a.s. [ul for all »n.

The intuitive idea in this definition is that the family of
marginal distributions of u does not vary with n, i.e. this family is
independent of n. Therefore no inference about n can be drawn basged on

the marginal distribution of u when 8 is unknown.

Example 2,2 (Liang,1983):
Let X1 and X2 be independent normally distributed random

variables such that

>
HE

1 N(n+8,1),

and

HE

X, N(8,1).

Define T=X1+X2. Clearly T ig normally distributed with mean n+28 and

variance 2. Then for any (nO,BO) £ I?Z

if we choose ¥(n) = —n+no+30, T
is seen to be weakly ancillary for n. We note of course that T is also

sufficient for B the accessory parameter. But since the distribution



..1?..
of T depends on n as well, it does not satisfy the ancillarity of
definition 2.1 (Note that in this example T is also weakly ancillary

for A).

When f(x:6) is from the Darmois-Kocopman-Pitman class of the

exponential family, i.e.
£(x:8) = c(n,B) exp{s(x.n) + u(x)B}, (2.1)
we know (Lehmann, 1959, page 52) that the marginal density of U is
fU(u:n,ﬁ) = c(n,B8) exp(up) r(u,n),
where 7r(u,n) is the integral of exp{s(x,n)} over all x such that
U(x)=u, Andersen(1970) proved the following lemma which characterises

weak ancillarity in this case,

Lemna 2.1:

The statistic U in (2.1) is weakly ancillary if and only if

fog r(u,n) = a(niu + b(ny) + d(w),

where a and b are functions of n only,

We give an example to illustrate the value of this lemma,

Example 2.3 (Andersen,1970):
Let Xi and Yi be independent Poisson variates with means

exp(n+ﬁi) and exp(Bi) respectively (i=1,...,n). Define Ti=Xi+Yi. It is
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easy to see that the conditional distribution of (Xi,Yi) given Ti is

free of Bi. Furthermore, the marginal distribution of T, is

B.
—e 1(1+e) Bt ty
e e (1+en)

l’

Then
pog 7t ,m) = t, pog(l+e’) - sog(t, ).

Therefore ti is weakly ancillary for »n. Moreover a simple

investigation of the mean of ti shows that the choice of ¢i(n) is
p, () = ~sog(1+e),

These examples show that inference about n should be drawn
from the conditional distribution given the weak ancillary U. Moreover
U is sufficient for the accessory parameter so that the conditional

distribution is free of 8 and thus available for inference.

Our next definition is due to Cox(1958) (also in Cox and
Hinkley, 1974, page 31-32). This is an extension of the definition of
ancillarity for a single parameter model, contained in the same paper.
Let S$=(T,U) be minimal sufficient in the one parameter probability
model. Then if U is distributed free of the structural parameter, U is
said to be ancillary for the parameter, It is alsc required that U is

of maximum dimension i.e. a maximal ancillary. Such U may also be
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called 'S—-contained’ or ’“internal’ because it is a function of the

{minimal) sufficient statistic.

Clearly, according to Basu’s(1955, theorem 2) theorem, we
cannot have an S-contained ancillary if S is (boundedly) complete
since then ancillary statistics are independent of S. This point is

further clarified in Lehmann(1981, sections 2 and 4).

Definition 2,3 (Cox,1958):

Let S=(T,V,U) be minimal sufficient for 8=(n,B8) so that

(1) There exist functions m(T,n) such that the conditional
distribution f(m:niu) is independent of B. Furthermore, T,V and

U are of the maximum dimension permitting this independence.

(1i) Any of the following conditions holds with respect to the

density of U, fu(u:n,ﬁ):
(a) fU(u;n,B) is free of n, i.e, fU(u:n,B) = fU(u:ﬁ).

(b) Given any pair of values Ny, Mo and any u, the ratio
fU(u;nl,ﬁ)/EU(u:nz,ﬂ) rung through all the positive values as

B varies.

(c) If fv(vln,ﬂ) and fU(u;n,B) are the marginal densities of
V and U respectively, then given values N, My of n, there

will exist admissible values 81, 52 of B such that
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fv(v:nl’ﬂ) fv(vin*ﬂl)

fv(v:nZ,B) fv(v:n,ﬁz)

and

fu(u:ni,ﬁ) fU(u:n.Bl)

*

fU(u;nz,B) fu(u:n,Bz)

i.e. any intended distinction between values of n can be
regarded as a distinction between values of B. Hence U and V

provide no direct information on n,

The U thus defined is called an (S-contained) ancillary statistic for

n, and inference about n should be based on f(m:n|uj.

From this definition U should be a maximal ancillary. This
is the main purpose of the requirement on dimension in condition (i).
Condition (ii) ensures the uninformativeness with which we shall have
much to do in the discussion in section 2.3 as we compare this defini-
tion with others. V is the residual statistic when S is partitioned

into T and U and need not actually exist,

Example 2,4 (Cox and Hinkley, 1974, page 32-33):

Let Yl""'Yn be an independent normally distributed sample
with
2

d
Y. = N(r+8X.
3 (783,6),

and X has probability density function £(x). Then
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~ A

~ 2. . . s _ T v 82
S—(r,B,SSres,[Xj,[Xj) is minimal sufficient where SSres“Z(Yj T ij) ,

~

and r and 8 are the maximum likelihood estimators for r and A.
n A ~ _ _ 2 N
If we let T=(r,B8), V—SSres and U-(ij,zxj), U will be an
S-contained ancillary for (r,8). U is distributed free of all

parameters so that condition (ii) is trivially satisfied.

Example 2,5 (Cox,1958):
Let X and Y be two independent Poisson distributed random
variables with means Al and 12 respectively. Define n=12/k1 so that

8ﬁ=12 (or B=A;). The joint likelihood of X and Y is

e BpX o BN ()Y B g1 ® s 1 t n st

x! y! st ti(s-£)! 14n 1+n

—) (—)

where S5=X+Y, T-X., § is an S-contained ancillary for n since we may
redefine the parameters so that B*=B(1+n). Clearly, we can choose some
BO for any given o such that B(1+no)=ﬁo(1+n); thus leaving the

likelihood ratio unaltered. Condition (ii)(c) is thereby satisfied.

Sprott(1975) proposed definitions for marginal and
conditional sufficiency. But as we shall make clear, these can be
adopted as definitions of ancillarity. Motivation for these
definitions is the property of the likelihood ratio that it ig minimal
sufficient, Therefore, defining a statistic that is “in some sense’
independent of the likelihood ratio obtains for us another definition

of ancillarity in the presence of accessory parameters,
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Definition 2.4 (Sprott,1975):

Let Xz(Xl,...,Xn) be summarised in (U,V) whose distribution

factorises as follows:

f(u,vin,B) = £U(u;5).fC(v:n,B|u):

and

either
(a) given any value BO of B8, fc(v:n,ﬂlu)/fc(v;n,ﬁoiu) is
independent of v,

or

(b) we can find a function m(v,n,B8) such that
(i) given any values Myr Vor Ve Mg of m, v, n respectively

we can find Bo' 8. such that

1
m(Vo.no.Bo) = m(vl,no,ﬁl) =m,

and the distribution of m is independent of 8,
(ii) fc(v;n,ﬁlu)/fc(v;n,ﬁolu) is a function of B8, B, and m
only.

Then U ig ancillary for n.

We note that condition (b)(i) implies that two different
values of v can be made to yield the same value of m by an appropriate
choice of 8.

Clearly, even without conditions (a) or (b), U is already
ancillary for n since U is distributed free of n. However, these

conditions enable the conditional distribution given u to be
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uninformative toward B thus facilitating useful separation of the
parameters, This does not of course mean that U is maximal ancillary.
For, if the wunderlying probability model is complete, say, by
Basu’s(1955) theorem we would expect any ancillary statistic to be

independent of the likelihood ratio,

Further, from Sprott(1975) we have

Definition 2.5:

Assume X=(X1,...,Xn) ig summarised in (U,V) such that

f£(u,vin,B) = fU(u:n,B).fC(v:nlu):

and

either
(a) given any value n, of n, fU(u:n,B)/fU(u;no,B) is
independent of u,

or

(b) we can find a function n{u,n,B8) such that
(i) given any Ny. U, Uy and n, values of n,u and 7

respectively, there exist Bo' 81 such that

n(UO,nO,BO) = nluy,n,,B8y) = ng
and the distribution of n is independent of 8,
(ii) fU(u:B,B)/EU(u:nO,B) is a function of n, Ny and n

only.

Then U is ancillary for »n.
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In our later discussion, we shall find definition 2.5 more
useful than definition 2.4, From definition 2.5, U is functionally
independent of the likelihood ratio in (a) which therefore achieves
our purpose, In (b) however, part (i)implies that U can be made to
yield the same value of n by a convenient choice of 8 i.e. U cannot be
used to distinguish between values of 5 when g is unknown. In fact if
g(n:8) is the probability density function of n, g(no;n)Xg(nl;n) is
independent of U since some choice of B8 will satisfy the values of n,
and ny irrespective of the value of U. It follows by (ii) that the
likelihood ratio for n on no is essentially independent of U since it

depends on n, n and N only.

Example 2.6 (Godambe,1980);

Let X be a gamma random variable such that X1 and X2 are

observationg on X. The joint likelihood is given by

-ﬂ(x1+x2)

2n n-1
87 e (xlxz)

L

{F(n)}z

(n,B) € (0,=)x(0,=), Then (X1X2,X1+X2) is minimal sufficient for
(n,B8). Let U=X1+X2. The probability density function of U is

BZn e-ﬂu u(En—l)

fu(u;nlﬁ) = ’ U>Df
rezZn)

and the likelihood ratio is

2(n1-n2)
fU(u:nl,ﬁz ) (Bu) F(Eng)

fU(u;n2,B) F(an)
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By choosing n=8u, we see that given any values of u and ny, some B
exists appropriately chosen to satisfy any value of n, i.e. B=n/u. The
probability density function of n is

1 e Y UZn-l

- £ (B = ————, WO,
g UB re2n)

which is independent of B. So (b)(i) is satisfied, The likelihood

ratio above can be written as

2(n,-1,)
n 172 r(an,)

4

F(2n1)

a function of Ny Mo and n only as required in (b)(ii). Thus U is
ancillary. We shall later show that U is not ancillary by definition

2.3.

We now present vet another definition of ancillarity due to

Godambe(1980).

Definition 2.6:

U is ancillary for p "ignoring 8 if

(i) The conditional distribution of X given U depends on 8(=(n,8))

only through n, i.e.

f(x:n,B) = fU(uin,B).fC(x;nlu).

(i1) The class of marginal distributions of U
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H= {fU(uZn,ﬁ)I(n,B)EQ}

is complete for each fixed 7.

Example 2,7 (Godambe 1980);

Let Xo""'xn be independent and identically distributed

Poisson random variables such that

-8 Qi X,

e 21 8,60

£(x;3A) = , i=0.1,..., n
xi!

and A=(81,82) e (0,°)x(0,=), 1f we write

n+1
1—91

1-8

¢:82[ ],

1
it is easy to see that the marginal distribution of Uzzxi is

e_¢ oY
£,,(u:8,,8,) = ———,
u 172 ul

so that the distribution of X given U is

¥ ixi
ut(1-8.)" 8
fC(x;e ju) = nil 1
(1-6] U Tx, |

which is free of 82.
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A second example of this type of ancillarity is example 2.6

given above with U=X1+X2 ancillary.

Lehmann and Scheff&(1950, examples 3.5 and 3.8) have shouwn
the completeness of U in both these examples. S0 by Godambe’s

definition, U is ancillary in both cases.

We make the following remarks on definition 2.6:

a) Since in condition (i) the accessory parameter £ is eliminated
upon conditioning on U, U is sufficient for g. Basu(1955,1958) and
Lehmann(1981) clarify the role of completeness in (ii), showing
that a complete sufficient statistic separates out ancillary
information by making the ancillary part of the data independent
of the sufficient statistic, Therefore in the definition

completeness of U rids it of any ancillary information about BA.

(b)Y It is not clear what the phrase ‘ignoring B’ means, The

definition therefore remains vague in this phrase.

(c) Unlike the earlier definitions this one is based on the
inability to extract information from the distribution of the
ancillary statistic. However, if the structural parameter is
inextricably mixed up with the accessory parameter, this is not
conclusive evidence toward lack of information or even
ancillarity. This demands further justification which is lacking

in Godambe’'s definition.
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Since this definition is based on ‘unavailability of
information’ we shall see that it is closely related to the definition
we now proceed to present, due to Johansen(1976):

First of all we introduce the concept of ‘easily available
information” on which Johansen based thig definition. (U,T) is said to
contain “easily available information’ about n if Borel functions v

and w exist such that

fU(u:n,B) = fl(u;n,ﬂlv).fz(v;nlw).f3(w:n,ﬁlt).f4(tin,ﬁ).

Definition 2.7;

A gtatistic U is ancillary for n if (U,1) contains no
‘easily available information’ on n: i.e. if we cannot find some Borel
functions v and w such that

fU(u;n,B) = fl(u:n,ﬁlv).fz(v;nlw).fa(wtn,ﬁ).

As justification for this definition, Johansen(1976} proved

the following theorem,

Theorem 2.1:

Let the family F={f(x:n,8), xe¢X |(n,B)eQ } of distribu-

14
tiong of X be complete for each fixed n=n, and let there exist some U

such that

f(x;n,B8) = EU(u;n,B).fC(x;nlu}, (2.2)

i.e. U ig sufficient for the accessory parameter A, Then if there

exist Borel functions a(u) and b(u) such that
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fU(u:n,S) = fl(uiv,ﬁla(u)).fz(a(u);nlb(u)).f3(b(u):n,6),
the distribution fz(a(u);nlb(u)) is a one-point measure.

We may rephrase this result as follows: if the family F be
complete for fixed n=n, and equation (2,2) above 1s true, no
non-trivial Borel functions of U, a(u) and b(u) exist such that (U,1)
contains ‘easily available information’” about n, i.e. U is ancillary
according to definition 2.7. This forms a bridgehead with definition
2.6 and this result is formalised in proposition 2.7. Theorem 2.1
therefore serves to clarify the basis of definition 2.6 as well.

Examples 2.6 and 2.7 illustrate this definition,
We note the following consequent results from theorem 2.1.

(1) The case when the family F is complete for fixed n=n, provides us
with a requirement on this definition. Then the sufficiency of U for 8
implies ancillarity of U for n. When F is not complete, the definition
may be weak in application as we cannot always check for the

'non-existence’ of functions a(u) and b(u).

(ii) This theorem is also gignificant for other definitions, We recall
that the purpose in all definitions is that inference be based on the
conditional model fc(x;nlu) in (2.2) and we want fU(u;n,B) to be
independent of 7 in some way. Under the conditions in theorem 2.1, no
further useful reduction of the distributions of U is possible.
Therefore for complete families, this definition (or equivalently

definition 2.6) will be at least as relevant in inference as any of



- 30 -

the others. For, whatever conditions we impose on fU(u;n,B)—whiCh ig
the essence of the earlier definitions-it will remain the simplest

reduction in n possible in the distributions of U,

Barndorff-Nielsen(1973) defined ’'M-ancillarity’ based on

the notion of "universality.’

Let IDQ be a family of probability measures indexed with
e, F39 is said to be universal if given any x°~ from the sample space

X, we may choose Ger such that
P(x ;80) 2 P(x:@o)
for all %, and for all Pe P

8'

Example 2,.8;

Let X be a binomial random variable with probability

function
b(x:n,p) = {2) R (1-p)™® x=0,1,....n

and n is fixed. Let n=5, say and D, be the value of p at which
b(%:n,p) is maximum,

1f x=2, p0=2/5,

if x=1, po=1/5, etc,

Thig family too is universal,

Definition 2,8:

A statistic U is M-ancillary for n=n(8) if
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(i) f(x:;8) = fU(u;B).fC(x:nlu),

where fU ig the marginal density of U, and

(ii) For each fixed n=n,. the family

G = {fU(u;B)In(8)=no}

is universal.

Barndorff-Nielsen argues that since we can make any value
of U the mode by an appropriate choice of 5, then U is uninformative
about n and hence ancillary for n. It is therefore the condition of
universality in (ii) of the definition that is considered definitive
of uninformativeness in M-ancillarity. This would mean that X in

example 2.8 is uninformative about p. This is not altogether true,

Johansen(1977) shows that M-ancillarity may be unreasonable

with the following example,

Example 2,9;

Let X and Y be independent variables with

P(X=1) = p, P(X=0) = q: p+g=1

P(Y=-1) = a, P(Y=0) = q, P(Y=1) = p-a.

Let n(a,p) = p and

Q= {(a,p)|0 ¢ a <p, 1/2 ¢ p ¢ 2/3}.
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Then Y=-1 is the mode for a=p, Y=0 is the mode for a=p/2 and Y=1 is
the mode for a=0, Therefore Y is universal.

Moreover (X,Y) is minimal sufficient for (a,p) such that

f(x,y;a,p = £, (xip).f,(v:a,p)

= fXIY(x;ply).fY(y:a,p)

since X and Y are independent. Thus Y is gufficient for a, the
accessory parameter. If we choose U(X,Y)=Y, U is M-ancillary for p.
Thus inference about p should be conditional on U i.e. based on X
alone,

But the distribution of Y2 depends on p alone so that X and

Y2 are independent and identically distributed random variables.

Furthermore, (X,YE) will contain twice as much information on p as X:
while conditioning on U utilises only half of that information. So
M-ancillarity may vield unreasonable results., In the light of this,

our discugsion that now follows will not further consider

M-ancillarity.

2.3 Relationships Between The Definitions,

Since the concept and purpose of ancillarity are clear,
i,e. that the distribution of an ancillary statistic is "in some
sense’ independent of the structural parameter and inference is made
conditional on the ancillary statistic, there are necessarily simila-
rities in the way these objectives are achieved in the definitions.
The work in this section explores these similarities, Proposition 2.7

has previously been proved in Gordon(1981); the rest are original.
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In definition 2.3 it is condition (ii) which is meant to
define an effective ancillary statistic in inference. Condition (i)
ensures that the ancillary statistic is S-contained and maximal.
Therefore only condition (ii) shall be used for the discussion in this

section.

Propogition 2.1:

Definition 2.1 implies definition 2.2.
Proof:

From definition 2.1, U is ancillary for n if

fx(x:n,B) = fU(u:B).fC(x;nlu).

If we take any values R and 80 of n and B, and define a function ¥(»n)

such that w(n)=3o for all n, clearly

fU(u:Bo) = fU(u:w(n)),

since the marginal distribution of U is free of n. So U is ‘weakly

ancillary” for n.

Similarly condition (ii)(a) of definition 2.3 will imply

definition 2.2,

Proposition 2.2

Definition 2.2 implies condition (ii)(¢) of definition 2.3.
Proof;

Let U be weakly ancillary. Then given Ny Bo' we can find a
differentiable function ¥ (n) with ¢’(no)=ﬂo such that
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fU(u;no,ﬁO) = fU(u:n,$’(n))

a.s, [ul. As well, given . 80, we can still find a differentiable

function ¥ (n) with w*(nl):ao such that

*
EU(u,n,w (n))

i

fU(u:nl,Bo)

a.s. [ul, 50

fU(u;no,BO) fU(u;n,w’(n))

* .
fU(u,nl,ﬂo) fu(u,n,w (n))
Since this is possible for any choice of ﬁ=80, we may write

fU(u;no,B) ) fU(u:n,wi(n))

fylurng, B £,(uin, $,(n))

fU(u:n,ﬂl)

£yluin,8))
which is condition (ii)(c) of definition 2.3.

As a corollary, definition 2.2 will imply definition 2.3 if
U is an S—-contained weak ancillary. Furthermore, we can conclude from
these two propositions that definition 2.1 implies condition (1i)(c)

of definition 2.3; the direct proof to this conclusion is trivial,
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Proposition 2.3:

Definition 2.2 implies definition 2.5,
Proof;

Let U be weakly ancillary for n in the model f£(x;n,8). Then
for any values N, and Bo of n and B8, a differentiable function ¥" ()

exists such that w’(no):ﬁo and

Eylusng By) = £yluin " ()
a.s. [ul: i.e.

fU(u;no,w’(no)) = fU(u:n,w’(n))

a.s. [ul. This is true for any BO such that a differentiable function
satisfying this equality exists. Since 30 can be chosen arbitrarily,
we write B instead of BO to allow for variation. Thus for any B8 value,
a differentiable function w*(n) for which w*(no)zﬁ will exist such

that
£ ( ; = f M (7?))
U un ,B) U(U,?},;b ,

a.s. ful. n is allowed to vary in the right hand side of the equality
so that ¢*(n)=ﬂ at some n value (one such value is , but there could

be others). Then

fuiu:no,s) :1
fytuin, 8)

independent of U, Hence U is ancillary according to definition 2.5,
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From propositions 2.1 and 2.3, we can conclude that
Fraser’'s definition 2.1 implies definition 2.5 too: the direct proof

to this is also trivial.

Proposition 2,4:

Condition (ii)(a) of definition 2.3 implies definition 2.5.
Proof:

This proposition follows easily from a similar result that
definition 2.1 implies definition 2.5, noted above since in condition

(ii)(a) of definition 2.3 we have

£ Cuin, B) = £,(u;8),

as for definition 2.1.

To give further clarification on the difference bhetween
condition (ii)(c¢) of definition 2.3 and definition 2.5, we give two
examples both guoted earlier. They show that neither definition need

imply the other.

Example 2.5 (contd,.):

The probability function for the ancillary statistic was

found to be

e B 14yl
fU(u:n,m = ,
u!

and hence the likelihood ratio of U to m) ig
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fU(u:nl,B) ) e—B(nl—n2) [1+"1)u

£yCuingy, 8) 141,

This evidently satisfies neither condition (a) nor (b) of definition

2.5, although it satisfies condition (ii)(c) in definition 2.3.

Example 2.6 (contd.):

This example was quoted to illustrate definition 2.5. The

likelihood ratio for nlzn2 is

fU(u;nl,B) 2(n1-n2) F(2n2).
——— = (Bu) —_—
fU(u;n2,B) F(2n1)

while for 51:82 it is

fU(u;n,Bl) —u(ﬂ1-82)

B
= [dl)2n e

Condition (ii)(¢) in definition 2.3 requires that these ratios be
equal for some ﬂl and 52. Clearly this will not always be possible.

Therefore definition 2.3 is not satisfied.
It is interesting to note however that this latter example
satisfies condition (ii)(b) of definition 2.3. The relationship

between this condition and definition 2.5 is as follows:

Proposition 2,5;

Condition (ii){(b) of definition 2.3 implies definition 2.5.


http:fu(u;1].82
http:fU(u;1].81

Proof:

By condition (ii)(h) of definition 2.3,
fU(u:nl,B)ffu(u;nz,B) runs through all the pogitive values as B8
varies. This is irrespective of the value of U. Thus this likelihood

ratio is independent of U and definition 2.5 is satisfied.

Proposition 2.6:
Definition 2.1 implies definition 2.7.
(Similarly condition (ii)(a) of definition 2.3 will imply definition
2.7).
Proof;
If U does not satisfy definition 2.7, there must exist v

and w such that

fU(u:n,ﬂ) = fl(uin,Blv),fz(v;nlw),faiwin,ﬁ).

However, in definition 2.1, fU(u:n,B)wfu(u:ﬁ) so that such v and w

cannot exist, This proves the proposition,

Definitions 2.6 and 2.7 are similarly based on the concept
of completeness and therefore on the concept of ‘unavailable
information.” The relationship between them was formalised by

Gordon(1981) in the following proposition.

Proposition 2,73

The ancillarity of definition 2.6 implies that of

definition 2.7.
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Proof:

It suffices to show that if the class H={fU(u:n,ﬁ)l(n.3)eQ}
of marginal distributions of U is complete for each fixed 15, then
(U,1) contains no 'easily available information’” on n, thus satisfying
definition 2.7.

Let g and h be functions of U such that

£,(g:n,Blh) = £,(g;n]h).

According to theorem 2.1, this distribution is a one-point measure.
Thus no such g(u) and h(g(u)) exist for the equality above to hold in
a non-trivial way. So (U,1) contains no "easily available information’

about n, and the proposition is proved,

2.4 Conclusion,

We have egtablished some interrelationships between the
various definitions of ancillarity in the presence of accessory
parameters, In particular, it is instructive to classify together the
definitions of Fraser(1956), Andersen(1970,1973), Cox(1958) and
Sprott(1975) while the definitions of Godambe{1980) and Johansen{(1976)
are related through their requirement of ‘unavailable information’

achieved through completeness.

Therefore we compare the first four definitions. On the
basis of their relative strengths, it is clear that definition 2.1 is
the most restrictive while condition (ii)(c) of definition 2.3 and
definition 2.5 appear to be the least restrictive, It is difficult to

say which definition will be most useful in practice. However, in each
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problem it seems advisable that the strongest eligible definition be
applied as that would appear to offer the biggest reduction in the

sample space: a fact illustrative of its strength.

Note too that the difference between condition (ii)(a) of
definition 2.3 and definition 2.1 lies in the fact that the latter

ancillary statistic is also sufficient for 8.

On the other hand, definition 2.6 is stronger than
definition 2.7. The usefulness of these two definitions in inference
may be in doubt as may be deduced from the comments in section 2.2. It
was pointed out to me however, that definition 2.1 will imply
definition 2.6 in case of the exponential families since they are
complete, It also follows that condition (ii)(a) in definition 2.3
will not imply definition 2.6 since we cannot have S-contained
ancillaries in complete families. Nevertheless, theorem 2.1 gives an
indication of how much reduction by ancillarity we can achieve in

complete families.

The following table is given to assist in summarising the
results of this chapter. A tick means that the definition in the row

implies the definition in the corresponding column.
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DEFINITION 2.1 2.3 2.2 2.3 2.3 2.5 2.6 2.7
C (ii) C (i1i) C (ii)
(a) (b) (c)
2.1 J/ v v/ v v v/
2.3
¢ (ii) / / / J
(a)
2.2 / /
2.3
C (ii) /
(b)
2.3
C (ii)
(c)
2.5
2.6 J
2.7

where C = Condition, *This holds for complete families.
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3. THE PITMAN-MORGAN TEST AS A CONDITIONAL TEST.

3,1 Introduction,

Finney(1938) developed a significance test for the ratio
of variances in a bivariate normal distribution when the correlation
coefficient is known. Nevertheless his adaptation to the case when the
correlation coefficient is unknown, and hence can only be estimated,
is inadequate. Pitman(1939) and Morgan(1939), however, developed a
suitable test criterion for the latter case. This is what we call the
Pitman-Morgan test for wvariance ratios in a bivariate normal
distribution.

In our work, the correlation coefficient, g, is an
accessory parameter. By conditioning on a sufficient gstatistic for p
to eliminate it and applying conditional inference procedures
developed in Williams(1982), we show that the Pitman-Morgan test is,
in fact, a conditional test., Successful application to such an
important test criterion, lends credibility to conditional inference
procedures as being able to give a significant alternative approach to
problems in statistical inference. In this ©problem, sampling
conditionally vields identical results to unconditional sampling. Here
the test criterion is derived as a test for independence between
sufficient and ancillary statistics. Furthermore, it is often possible
to transform tests so that we test for such independence, with

identical results.

3,2 The Pitman and Morgan Approaches,

Let X and Y be correlated wvariables from a normal

distribution whose joint probability density function is given by
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1 1 x—gi 2
N exP{" 2 [( ) -2
2n0102(1_p ) 2(1-p%) o4 0,0, 95

(-2, YCy—Ht,) y-u
T2y 2y,

where My and of are the mean and variance for X and similarly Ko and
o% are the mean and variance for Y. o is the correlation coefficient

between X and Y.

Let (Xl'Y1)""’(xn'Yn) be pairs of observations from this

population., We need to define the sample means
X = in/n, Y = ZYan
and the sample variances
2 _ =.2 2 _ Gy 2
S1 = Z(Xi“X) /n, 82 = Z(Yi Y)©/n -

and the sample correlation coefficient

Z(Xi~x)(Yi—Y)

r = .
(Eo AT, -Dé)k

Then the joint probability density function for the n observations is

1 n X—1 (-1, ) (y=1,) y-u
{ )" expl- ——[(—1)% 2o 12 (22
2n6162(1-p ) 2(1-p™) o4 9,10, g,
s? Zprslsz Bg
+ T Tt 1}, (3.1)
% %1% 9
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“°°<#1pu2<°°,U<01,02<m,—1{p€1.
If we put
i

U, = Xi/01 + Yi/oz, Vi = Xifol - Yi/02' i=1,...,n

we know that the correlation between Ui and Vi is zero. We can write

their sample correlation coefficient as

Z(U1~U)(V1—V)

R = [
{{(Ui~ﬁ)2.2(vi~§)2}A
2,2 2,2
_ 51101 - 32/02
- 2,2 2,2.2 222,22.%
{(sl/o1 + 32/02) - 4r 8132/0102}
We put w = sffsg and ¥ = oflog. Then
w-y
R =

) ? = arlop®

From this form of R, Pitman(1939) was able to write down a
more appropriate test criterion for ¥ since the distribution of R is

known, This is

R(n—‘?)y2

(1-R%)%

(w-9) (n-2)%

(41-r2)up)*
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which hag a 'Student’s’ t distribution with n-2 degrees of freedom,

Morgan(1939) used the likelihood ratio method to arrive at
the same criterion. For if we assume that the null hypothesis
Ho:ofzog=oz is true, the joint probability function for the n pairs of

observations from (3.1) is

1 n X-it -p ) (y-i,)  y-u
(— g exnl- ———[(—1)% - 20—t F 4 ()
2ne”(1-p7) 2(1-p7) o c o

Hence the likelihood ratio is

(s2-g2)? n/2
A=l =gy % 2 753 !
(81 + SE) - 4r 3152
n/2
= {(1-R%)

Thus A depends on R alone which led Morgan{(1939) to the

test criterion

R(n—E)K

(1-R%)*%

as for Pitman(1939).
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The t thus derived, is the Pitman-Morgan test statistic.
HO: 0, = 0y is rejected if |t| falls outside the desired probability

level,

3.3 The Conditional Approach,

In both approaches above, it was necessary to derive a test
either free of or independent of the accessory parameter p. This is
inevitable for any adequate test criterion to be derived. Therefore in
the conditional approach, accessory parameters are eliminated through
conditioning on their respective sufficient sgstatistics. The test
statistic 1is derived using methods suggested by Williams(1982) to
overcome the difficulty of conditioning on sufficient statistics which
depend on the parameter of interest (i.e. on the structural
parameter).

For brevity, we put

2 2 )
T = IXy 2 Typ = 1Yy Typ = IXGY,

where

2

Var(X) )

2
01X(1~p

Var(Y)

1l

2
02/ (1-p%).

We shall assume (without loss of generality) that X and Y
have zero means. (We may note in passing that if the means of X and Y

were U, and My (both nonzero), they could be eliminated either by

conditioning on their sufficient statistics, X and Y, or by writing
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X" = X—u1 and Y’ = Y~n2 if My and M, are known, X’ and Y  are pivotal
quantities ancillary for My and Ho respectively). The bivariate normal

density

(1“02)A 1 xf XY, y?
exp{- *(~§ - 2p—— + —5}}

2no, o 2 oy 0102 02

172

becomes (for the joint probability function of T11, T22 and le)
£yt ty000) =

n/2 (n-3)/2 1t t t

11
k(i-pz) (t11t22—tfz] exp{- 5(——§ - 2p~lg— + -g%)},
o

1 %919 9
(3.2)

k being a constant, Clearly, t12 is sufficient for p. We apply
Madow ' 8(1945) method for densities of sufficient statistics to derive

the marginal distribution of t12. For then

E(ty1 .ty typi0) = fTiz(tlz‘ﬂ)'fc(t11't22‘t12)'

the second factor on the right hand side being free of p upon
conditioning on T12 = t12. Let p have a specific value, Py = U, say.

Then

£Ct, ., ty,,8,5:0) f(tiz:O)

1177227 712777 _ ' (3.3)
f(tli'tZZ'tlz:p) f(tlz;p)
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The marginal density of T12 is, from (3.2) and (3.3),

ftt,,.t

, Lo
f(t, ) = — 227277 pop .
12 £(t,, tom t,.:0) 12
11-%22-%12°
n/2 pt,, /0,0
= (1-p%) e 121 2.f(t12;0). (3.4)
But
n 2

T, = gxiyi ~ X/EYS.

So for p =

0, le is distributed as a product of a normal and an

independent X, variate, and thus has the Bessel distribution given by

(n-1)/2
(tizfoloz) K

(n-1)/2t1270199)
(172 '

rderm/2)

%192

where K(n—l)/Q(t12/0102) is a Bessel function. Therefore the marginal
density of T12 in (3.4) is

2 n/2 pt12/0102 (n-1)/2
) ) (1-p™) e (t12/0102) K(nu2)/2(t12!6162)
f(t12'p) =

6,0, 2172ty rns2) '

(3.5)

a non-central density function. The conditional density of (Tll' T22)
given T12 = t12 is, using (3.2) and (3.5),
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; 2 2
, (1-3)/2 Wt /05 + t,,/05)
(tit,5-ty,) e
(b, , ton|t, ) = ¢ —11 22 12
11-t221t12) = 1372 '
(t,/0407) Kin-1y/2(t127919))
(3.6)
where
¢ = ko0, 2(D2 rwy rv2).
The conditional density in (3.6) can be written as
1
2 2
- et .+ t,a05/00)
, (n-3)/2 2of 11 e2rr T2
(t1qtpty)) e
(t, . /o,0.) " 1/2 g (t,1/0.0) 3.7
127919 - Kenm1y/2(t127919;

: . _ 2,2 _ 2 -
We reparametrize with p = 01/02 and ¢ = 1/01. Clearly S = T11 + $T22

is sufficient for the accessory parameter ¢ while 5 also depends on
the structural parameter ¥. This means that if we attempt to condition
on S to eliminate ¢, the differential element in the conditional
distribution given S will depend on . For the difficulties involved
in this, we refer to Kalbfleisch and Sprott(1970). We shall apply the
procedures developed in Williams(1982) to overcome this problem. Using
these procedures, an ancillary statistic for the accessory parameter ¢
shall be derived as a statistic independent of S. This ancillary

gtatistic then becomes the basis for inference about ¢,

We obtain the ’'marginal’ density of S, Write T = T11 S0

that T22 = (S5-T)/¥. It is easy to see from (3.7) that



_5[:]...
- 4y - gl y(n=3)/2
h(s,t[tlz) = ¢’ (t(s-t) ¢t12) .

where

-ps/2
c’ ce )
w(n_S)fz(t12/°102)(n—l)/ZK(n~1>;2(t12/°102)
Since this is a density,
tls—t)-t2.p > 0
12
and so
It - /2] < (/4 - wtfz)%.
The "‘marginal’ density of S is therefore
s/2 + (52/4 - zl:t?z)“é
h(s) = ¢’ | (ts - t% - wtfz)(“’3}/2 dt
s/2 - (s%/4 - wtfz)%
2 2 %
= 20" | ((8/24) (s/2-t) - wtfz}(“'3)’2 dt
0
2 2
(3 /4 - ¢t12]
=2 J (%74 - % - g2,y (D2 gt

0
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If we put
T
U =
2 2 T
(5%/4 - y12,)
then
1

hy(s) = 2" [ (s2/4-pt2,) "2 (4 2y (TDIZ (g2 g2 3R qy,

0

and letting Z = U2, it is easy to show that the 'marginal’ density of

S simplifies to

(n-2)/2

h (s) = ¢’ (s%/4 - wtfz] Bl%, (n-1)/2)

where B8 is the beta function. Hence the conditional density of T given

T12 and S is
hytityy.8) = — 7 (n—2§§2 '
(s™/4 - wtlz] B, (n-1)/2)
Putting
T - S/2
Ve N
(8°/4 - ¢T12]

it is easy to see that
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(12 ()72

h,(v]t,,,8) =
2 e B(%, (n-1)/2)

As t runs from 0 to to' v goes from -(SJ2)/(52/4 - ;ét%z]/2 to
(t, - s/2)/(s%74 - wtle% so that the conditional distribution

{
function of V given T12 and S varies with (t - 5/2)/(32X4 - wtfz)é

2 ]%
12
independent of 'I‘12 and S, sufficient statistics for the accessory

alone, Therefore (t - 8/2)/(82/4 - Yt (or a function of it) is
parameters, p and ¢, and congequently i8 independent of the accessory
parameters. Williams(1982) therefore suggests that inference about

be based on such a statistic. It is easy to see that

t-s2 b1/t — ¥ _
2 7% 2 2%
(8574 - ¥ti)" {4ty /b, (L - £ /b 1 ts0) + (b 7t = 90}

2 - t2_st,.t.,. Therefore

In our earlier notation, w = ti4/ty, and r 127 %11%22

this statistic simplifies to

(0 - ¥)/(4p(1 - r2))%

1+ (- )/l - £2))%

so that the conditional distribution function is a function of the

term

w -9
(dwp(1 - r2))%

Therefore, inference on the variance ratio ¥ is based on either
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(n-2)"%(w - $)
t._

(a1 - )"

which has a Students’ t-distribution with n-2 degrees of freedom

(Cramér, 1945, page 400-401) or alternatively on

(n-2)(w - $)°
F =

(dwp(1-r2))

which has F-distribution with 1 and n-2 degrees of freedom. These are
the Pitman-Morgan test statistics. The null hypothesis on % is
rejected if the t (or F) value exceeds the required level of

significance obtained from their respective tables.

3.4 Conclusion,

The Pitman-Morgan test is therefore a conditional test and
the conditional approach is an appropriate alternative approach to
deriving the test for variance ratios in a bivariate normal
distribution. A comparison, particularly with Morgan’'s(1939)
likelihood ratio approach, is interesting. The likelihood ratio, being
minimal sufficient, summarises all the available information in the
data about the parameter of interest. Since the resultant test
statistics in both our cases are identical, we conclude that 'no
information’ is lost to the 'marginal” distribution of S through

conditioning, in our approach. Nevertheless, the ’marginal’

distribution of S depends on ¥.

We have used the word 'marginal’” loosely in reference to



- 54 -

the density hl(S)’ More correctly, hi(S) is the conditional
distribution of S given le = t12.

Williams(1982) cited the Pitman-Morgan test as an example
of inferences which cannot be derived based on a test for independence
between sufficient statistics (for the accessory parameters) and
ancillary statistics(for the accessory parameters), In our work T12
and S are sufficient for the accessory parameters g and ¢ respectively
while the resultant statistic (t - s/2)/(s?/4 - yt2,)% is ancillary
for both p and ¢ by virtue of being independent of le and S. Thus the
work in this chapter affirms Williams’(1982) conditional procedures in
application and proves that contrary to his comments regarding the

Pitman-Morgan test, this test can bhe derived as a test for

independence between sufficient statistics and ancillary statistics.

The conditional inference theory in which we test for
independence between a sufficient statistic for the accessory
parameter and a statistic independent of the sufficient statistic (and
therefore ancillary) has developed from Basu's(1955) theorem.
Basu’'s(1955) theorem established the equivalence in general of an
ancillary statistic for a parameter £, say, and a statistic

independent of a sufficient statistic for 8.
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4, THE ANALYSIS OF CONCURRENT REGRESSIONS,

4.1 Introduction,

The theory of linear regression concerns the prediction of
a random variable Y using information obtained by observing another
independent (or concomitant) variable X, where X and Y are linearly
related, Consider several sets of data observed on such (X,Y) under
varying conditions, Sometimes it happens that the resultant lines have
different slopes but are concurrent, i.e, all the straight lines pass
through some common fixed point, (£,n) say, The point (£,n) is called
the point of concurrence while we refer to the lines as representing

concurrent regressions.

The analysis of concurrent regression lines first received
attention in Tocher(1952) and Williams(1953), They developed test
procedures and methods for constructing confidence limits for € and n,
the abscissa and ordinate of concurrence respectively. That analysis
received further clarification in Williamg(1959, page 137-149). Follo~
wing the analysis in Williams(1959), we show that their work is an

application of conditional procedures,

The analysis in Williams(1959) deals with a special case in
which there are eqgual subsample sizes (for each set): and for which
the dependent wvariable Y is observed for the same wvalues of the
independent variable X in all the sets of data, but under some varied
conditions. Sections 4.3 and 4.4 describe and discuss the analysis of
concurrent regressions without these restrictions: this general case

has previously received no attention,
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We shall now introduce some notation relevant to our
discussion., Assume there are m sets of data, each set with ny obser-

J, 3=1,....n.;

vations. The observations shall be denoted with (Xij,YiJ i

i=1,...,m: where Yij shall be assumed to come from a normal population

such that

_ _ _ 2
E(Yij) =n + Bicxij £), Var(Yij) = 0",

th th

value of Y in the i
th

Thus Yij is the j
th

set, correspornding to Xij’

the j~' value of X in the i~ set. ?i and Xi shall denote the mean

values of the Y's and X’s in the i group. We further define:

th set of values)., In

(bi is the least squares estimate for Bi in the i
respect to the concurrent regressions, the corresponding definitions

are

*
pi =1 yij(xij - £)

* Y-
ti =] (Xij £)7.
The definition for b?, the regression coefficient for the ith concu-

rrent line shall be presented later.
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In the gpecific case of Williams(1959), n;=n and xij:x__j for

all i=1,...,m, Consequently, for this case we shall write pi in place

of pi, t in place of ti’ t” in place of t: and bi in place of bi. For

brevity we also put

J=n} (§i -y )2
i . e
n - —
K=-1y; (P
t i
and
_ T -2
L = -5 Y (pi—p) .
t* 1
4.2 Conditional Procedures In The Analvsis of Williams(1959),

Given several sets of data on (¥X,Y) whose concurrence we

wish to investigate, an appropriate procedure for analysis is:

(i) to test for difference in the slopes of the regresgsion lines:
(ii) where the slopes do not differ significantly, the lines are
assumed to be parallel. Then we test for difference between lines,
i.e. whether the distance between the lines is zero at any fixed
value of X:

(iii) if in (i) the slopes differ significantly, we test for the
concurrence of the regression lines. We require a test for the
departure from concurrence. This is essentially the analysis

discussed in this chapter.
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We identify two possible situations in (iii):
(a) when £, the abscissa of concurrence is known but n is un-
known (we shall write §:§O in this case).

(b) when both § and n are unknown,

(a) Since EO is known, n is the structural parameter while Bi is inci-
dental (we use ‘incidental’ instead of ‘accessory’ to describe the
Bi's because the Bi's increase in number with the sets of data). Thus
the test for departure from concurrence is equivalent to a test for
departure of the regression lines from n at szgo; and this test
procedure needs to be independent of the incidental parameters, Bi'

i=1,....m,

It is easy to see that if the regression lines are concu-
rrent, the point of concurrence (Eo,n) must lie on the mean regression

line for all the sets of data. This line is

Putting szfo, obtains for us an estimate of the ordinate of concurre-

nce, n, as
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i - .
3 - (g -~ X )r l=11"'rm;
1. t Q .

and gince §O ig known, it is easy to show that
E(yic) = N,

Y.

ic is evidently sufficient for n but ancillary for Bi. The departure

of lines from n at xj=§o is reflected in the variations of yic's from

Yo and this test is free of the incidental parameters, Bi' i=1,...,m.
Since
, (¢ -0
Var(y. ) = o ( )
ic
nt
azt’
- 0
nt
where té = X(xj-ﬁo)z, the sum of squares for departure from

concurrence is

nt 2
;j g (in - YC)
[#]
I L, EgE) )
= ;—- { Z(yijy”) + "—?2—— Z(pi-p) + 2——;—- Zyi.(pi-p)}

£
= — {3+ 206,F K + (§ R 2 Ly (4.1)
t, N [ 4] .
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on m-1 degrees of freedom.

Only if this departure is not significant, may we carry out
an analysis of the concurrent regressions. Then the sources for varia-
tion in the concurrent regressions will be the difference among the

regression lines, the mean regression and the ordinate of concurrence.

Assuming concurrence, variations (or differences) in concu-
rrent regressions are reflected in the differences between slopes. The

parameters of interest will now be the Bi’s (n is accessory). Let us

define
% (yij - yc)(xj—go)
b? =
i 2
Y (xj —60)
{ p; + ny_(§ -x)}
= —t (4.2)
-
o
Clearly
! 2
E(b7) = Ej { nZ(Xj—€O) + BiX(xj—€o) - nZ(xj—go) }
o
=8

bi is a sufficient estimate for Bi and consequently the test for
difference in concurrent regressions is based on the sufficient
statistics, bi. But from (4.2), bi and pi are statistically equivalent

so that this test may very well be based on

pi =y +ny; (x =€),
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Since
2

Var(pi) = g té,

the appropriate sum of squares for difference in concurrent regre-

ssions is
1
~ T (p;-p")°
t7 i
(6]
L { T, D)2 + 2n(X € )T =7 )(p:=P) + n2(X £ 7. -7 14}
- - P;-p x. 0 yi. y.. pi p . 0 yi. y..
(o]
1t ) o,
= — { — + 2t(x —§O)K + nix —fo) J 1, (4.3
t7 n - *
C

on m-1 degrees of freedom.

The mean redgression sum of sqguares (for concurrent regre-

ssions) will then be

§ — (4.4)

on 1 degree of freedom: and for the ordinate of concurrence,

Yimnt
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on 1 degree of freedom, This latter sum of sguares is for departure of
Yo from 0., However, in most of the problems we would require the sum
of squares for departure of Yo from some hypothesized value N, of 7.

This is

(yc-n}zmnt

e (4.5
£

o

The analysis may be summarised as follows:
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ANGOVA Table 4,1

Source d,.f, Sum of Squares
Mean Regression 1 (4.4)
Ordinate of Concurrence 1 (4.5)
Difference in Concurrent
Regressions m-1 (4.3)
Departure from Concurrence m-1 (4.1
Total Variation due to 1 _ 5 tL
Regression 2m — (mp~ +mnt(yc—n) } +J+ —
t n
o
Residual min-2) by subtraction
2
TOTAL mn Y yij

1]
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The analysis in table 4.1 is evidently based on ?i and p;.
statistically independent variables. These in turn are transformed to
Yic (ancillary statistic for Bi) and pi (sufficient statistic for ﬁi).

Moreover,

1j

Cov(yic,pi) Cov(pi,yi‘) + (Eo~x)Cov(pi,bi)

o (% 60 + (6% Yol = 0. (4.6)

i

(b) If both ¢ and n are unknown, we test for an additional hypothesis,
HO:§=§O. When HO is not true, p; and Yie will no longer be sufficient

and ancillary respectively for Bi. In fact, if we put 8=§~§0,
E(p]) = nn(io—g) + B (LT + n8(§.~€))

and
E(yic) =n + Bi8

so that Yio varies with 81. Under Ho' 1 and Yie will be sufficient
and ancillary respectively, for Bi similar to what we had in case (a).
By comparison with the discussion on linear functional relationships
in Williams(1976), we know that the sample correlation between p; and

y.. will be centrally distributed under HO and free of Bi' Otherwise

ic
E(yic) depends on Bi so that the sample correlation has a non-central

distribution which depends on Bi'
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Diagram 1 may clarify this., It shows how Yic varies with Bi
and consequently the sample correlation coefficient is non-centrally

distributed when HO is false.

Diagram 4,1:

Y E Y

The test for Hozgzgo may therefore be designed as a test
for the centrality (or non-centrality) of the distribution of the
sample correlation between p; and Yier Equivalently, we may test for

the significance of the regression of Yo On p:.

i In this problem the

Bi's are incidental parameters.
Under Ho’ pi is sufficient for Bi‘ But when HO is not true,

conditioning on pi does not eliminate Bi’ {(In the same way Yie will
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not be ancillary for Bi). Thus the regression of Yic On pi will be
significant, i.e. the regression sum of squares will be non-centrally
distributed since E(yiclp;) depends on ﬁi (Williams,1976: Rao,1973,
page 264-265), This sum of squares may be appropriately called the sum

of squares for the abscissa of concurrence, and is given hy

nt( Iy, (p]-p") G

t 1 (pj-p")°

nt¢ (6% )% - gkt - 1) - b )2
- . = N (4.?)

2
23 - 2(£-% MK + g L}

t7{ n(é-x )

Clearly, the regression sum of squares in (4.7) will be 0
when € is replaced with its maximum likelihood estimator. Therefore an

estimate of ¢ is obtained by equating (4.7) to 0, i.e.
LY. (p{-p") = 0. (4.8)

Letting X be the estimate for £ from (4.8), we write z=xc—§ . From

(4.7), equation (4.8) simplifies to

2 tL £
2K - 27 - 9) - XK =0

so that

2 .
N R (RS- A L G RO I
K=K+ AR XY
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One root from (4.9) will maximise, and the other minimise the sum of
squares for departure from concurrence (for unknown §0); we reguire
the latter., This sum of squares may be obtained as a difference from

the ANOVA table 4.2, and is

t 2
ﬁ (JL - K™)

(4.10)
1 . ma 2
T ¥ (pimp )

Since the numerator is free of £, we need xC that maximises the deno-
minator, i.e, the sum of squares for difference in concurrent regre-

ssions (as indicated in (4.3)).
The analysis is as follows:

ANOVA Table 4.2

Source d.f. Sum _of Sguares
mnt 5
Ordinate of Concurrence 1 — (yc -n)
e
Abscissa of Concurrence 1 4.7
Departure from Concurrence m—1 (4.10)
nt 2
TOTAL m ~— 3y y..-n
> ic

The test statistic for HO:§=§O is (4.7)/(4.10),


http:4.7)/(4.10

- 68 -

From Williams(1973), we may conclude that the variance of
X (the estimate from (4.9) and (4.10)) is asymptotically the recipro-
cal of the second derivative (with respect to &) of this test stati-
stic at §O. This is

2 2
tO {(JL - K™)

4m-2)n (n(¢~% XK - tL + nd)?

Derivations in this gpecific case reqguire constant weights.
When we allow the subsample sizes, n,, to vary from set to set, we
need varying weights as well. This is the general case discussed in

the following section,

4,3 The General Case,

The analysis in section 4.2 placed restrictions on ny and
the independent wvariable, X. Over the various sets of data, we now
allow for:
(1) variation in the subsample sizes, i.e. j=1,...,ni;
(ii) the values of the independent variable X to vary from set to
set,

The observations are (Xij,Yij); jzl,...,ni; i=1,...,

We do not discuss the case when §O is known since the ana-
lysis in section 4.2 (a) applies to it. The only variation from (4.1)
and (4.3) ig that in this case the weights will vary with i. The

weightg are still chosen as inversely proportional to the respective

variances,
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Assume 60 ig unknown., We redefine some of the terms.

Let
* .3 b.(£-%. ), i=1 (4.11)
Yie =¥y, * b 0, d=1,....m. :
As before,
E(y: ) = 5 (4.12)
YiC 'Q"'Bi .

* * . .
so that E(yic)zn and Yio is ancillary for 51, when HO.§~§0 is true.

Furthermore,
. 02 o 02
Var(y, ) = — + (§-x, )° —
ic i.

n t,
i i

2 ¥

n.t,

i7i

(ti and ti are as defined in section 4.1). Since Var(y?c) varies with

i, we define the weighted mean of the y?c’s as
* *
Yo = X ¥i¥ic

*
[wizl. We choose W, to be inversely yproportional to Var(yic) (Hoel ,

1971, page 128-129 and page 195-196): i.e,

n.t.
Wi = l*l/niti .
t. et

1 *
t.
1
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th

The regression coefficient for the 1 concurrent regre-

gsion line is defined as

]
b; = 7
7 (xi.—f)
- ]
J
L {p *e-x, ) ) (4.13)
S % LR Y §x; ) 1. .
i
Since
E(p}) = T (x; =€) (0 + By Ry ~60))
* — —
= ﬁiti + nin(xi.—g) + BiniS(Xi.-g)' (4.14)
then
* 8 - -
E(bi) = ﬁi + €¥ {niBi(xi.~§) + ni(§wxi.) Xwiﬁi]

i

and bi is sufficient for ﬂi' if HO:8=0 is true,

The problem then is to design an appropriate test statistic
for Ho:8=0. As we show in the following section, the choice of suita-

ble weights is the problem we face here,
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4,4 The Analvsis of The General Case,

The structural parameters in the problem are § and n, while
the Bi's are incidental. If Ho is true, y?c will be ancillary for ﬁi,
while b} is sufficient for 8,.

A comparison with table 4.2 enables us to write the sum of

squaresg for the ordinate of concurrence as
* 2
Lw (ym~. (4.15)

It is clear from (4,13) that in general p? will not be
equivalent to b:, being a different linear function of b; in each

* %
group. Moreover, Cov(bi,yic)¢0. For,

1

* % - * %
- { COV(pi'YiC) + ni(§~xi.)Cov(in,yc) }.

il

* %
Cov(bi,yic)

i

From (4.11),

i

* % * - - *
COV(pi’YiC) Cov(pi,yi_) + (§-xi.)Cov(pi,bi)

_ A2 T = 2
=g (xi' £) + (¢ xi.) o
= 0,
Also
2 %
Covey® ") = o
V(Y ¥ = W
n.t.
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Therefore

So it is misleading to design a test for HO:§=§0 on the assumption
that §O annihilates Cov(bj,y?c), although it seems reasonable that b:
and y?c should be independent (or uncorrelated) at (&O,no) and corre-

lated elsewhere (diagram 4.1).

However, we know from (4.12) that E(y?c) depends on Si s0
that the arguments in section 4.2 (b) apply here; i.e. although
Corr(p?,y?c)zﬂ, the sample correlation between p:A and yic will be
non-centrally distributed, and depends on Bi when Ho is not true., The
test for the non-centrality of this distribution (i.e. the test for
HO:§=§O) is modelled as a test for significance of the regression of
y:C on pj. The regression sum of sguares will be non-centrally
distributed (and hence the regression 1is significant) if the
incidental parameters, the Bi’s, are not eliminated from the

conditional model (conditioned on p?). In turn, this shows that pI is

not adequately sufficient for 81 or HO:§:§0 is false (Williams, 1976).

The regression sum of squares, also called the sum of
squareg for abscissa of concurrence, is

* ¥ —%_ .2
{ Zkiyic (pi-p )}

% %7
)3 ki(pi—p )

(4.16)

where
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o
It

*
cC.D.
X iPi

1
*
1

The choice of the weights, ki’ will be discussed later.

It follows, by difference, in table 4.3 below, that the sum

of squares for departure from concurrence will be

* %2 % % 2 * % -k 2
[; wi(yic-yc) Y ky(py-p )71 - [L kyy, (py-p )]

X ki(pi-ﬁ*)z (4.17)
The analysis is as follows:
ANQVA Table 4.3

Source d.f, Sum of Squares
Ordinate of Concurrence 1 (4.15)
Abscissa of Concurrence 1 (4.16)
Departure from Concurrence m-2 (4,17)

2

*
TOTAL m Y wi(yic—n)
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The sum of gquares in (4.16) attains the value zero when £

is the maximum likelihood estimator. Therefore we estimate §o from

*

T kv (pi-p ) = 0. (4.18)

This simplifies to

L ki(y; - bjx, +8b(p; - Ic;py +ny; Xy - fogngy; %

- §(niyi- - Xciniyi.)) = 0.

If we put
Ty by
Si =Py -~ ICipy * oMy Ry - IOy X
b=y - Loy

(4,18) may be written as
2
Y ki[ £ biti - §(riti+bisi) + risi) = 0,
and the estimate is

2 %
. )3 ki(riti+bisi) + {[} ki(riti+bisi)] ~ 41y kibiti][z kirisi]}

X =
C

2y kibiti

There are two roots to equation (4,18)., But at §=§0, the sum of
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squares for departure from concurrence (in (4.17)) will be minimum,

Hence we take as estimate for € the X which minimises (4.17).

Attention shall now be given to the choice of ki‘ It seemed
appropriate to choose weights, ki' to maximise the correlation between

*
Y.

ic and kip:. However, it became evident that such flexibility in

choosing the weights permits ki to be chosen making the correlation

* * i
between Yia and kipi' unity.

A practical and reasonable approach is to work with the

ratios p?/t? (=q§, say), From (4,14) it is easy to show that

n.p(x, -€) + B.n.d(x, -£)
B(qy) = §; + e
t;
1

and so q? will not be too greatly affected by the spread in the Xij

values, while simultaneously it reflects the variations in the slopes

of the concurrent regression lines.

In place of the regression sum of squares in (4.16), we now
. * *
have the regression of Yi. On q, with w, as the weights., This sum of

squares is

* *_ % 72

W ly;. - vJq; ?
X % 2

):Wi(qi - g )

where

- *
qa =73 w.4q; .
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Congequently, the sum of squares for departure from concurrence (i.e,

in place of (4,17)), shall be

* *2 *_*2 * * 2
X w(y; oy )" ME wa-q ) = (E Wy v,

*
1°4ic )qi )
2

¥

The remaining sums of squares in table 4.3 remain unchanged.
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5, AN ASYMPTOTIC PROPERTY OF THE PARTIAL LIKELIHOOD,

5.1 Introduction,

Neyman and Scott(1948) pointed out that when the rnumber of
accessory parameters in the distribution of the population sampled
increases to infinity with the sample size (though the structural
parameters be finite), the method of maximum likelihood will yield
inconsistent estimators. Nevertheless the likelihood theory remaing so
relevant and useful in statistical inference that it is tempting to
consider modifications which allow an application to this problem,
Much discussion of this question is available in the literature,
notably that of Andersen(1970,1973) and Kalbfleisch and Sprott(1970)
among others, Cox(1975), in a bid to reduce dimensionality, has
introduced the ’'partial likelihood.’ It is desirable that the partial
likelihood, which would then be the basis for our inference, be free

of the accessory parameters,

Let Y, the observed random variable, be such that it can be

transformed into a sequence

(X1'51'X2*52""'Xm'5m)'

We may then rewrite the full likelihood as

m , , m . Q
i f(x~tx(]»1)'s(]—l):8). I f(sjlx(])'S(J_l):e)
=1} j=1

I3

where
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and 8 & ©, an open subsgeft in IQk, is the vector of parameters. The

product

m . ‘
=1 f(s.lx(J),s(j~1):8)
1 ]

D
Ly

is called a ‘partial likelihood.’ As aforementioned, it is useful if
this likelihood depends only on the structural parameters and not on
the accessory parameters, Furthermore, marginal and conditional
likelihoods are special cases of the partial likelihood. The partial
likelihood will be identical with the marginal likelihood if the
sequences of X's and S'g are independent: and it is identical with the
~conditional likelihood if and only 1if S. is independent of

J
(X, ,.%. R I

j+1774+27

Cox(1975) further points out, without proof, that certain
useful asymptotic properties of consistency and asymptotic normality
should hold for the partial likelihood. The following work is a
contribution toward formalising these resultgs, It is an extension of
Sweeting ' s(1980) results on the maximum likelihood estimator. It will
also be shown that these results are applicable to the marginal and
conditional likelihoods, In particular, work in this chapter aimsg to

establish the consistency of maximum likelihood estimators from these

likelihoods under very general conditions.

5.2 Definitions And Conditions.

We define Pg, a probability measure on the measurable space
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(){t,Z\t), t being either discrete or continuous, such that Pé is
(absolutely) continuous with respect to At' a o-finite measure., It is
assumed that the density

t
dPQ

£, (8) = —
t
dAt

has second-order partial derivatives for all 8 ¢ 8,
Let the corresponding logarithm of the partial likelihood

be

p t . .
0, =7 pogfgfs,|x(3),s(3 Dy, (5.1)
j=1 )

The superscript 'p’ will refer to terms derived from the partial

likelihood wherever it appears,

Moreover, we shall write

Qoqu(sjix(j),s(j—l):B). (5.2)

[
+
1
™
2o
oy

]

The symbols —— u and :::==¢b shall respectively stand
for uniform convergence and uniform weak convergence in compact

subsets of 8,

Definition 5,1:

A sequence {qn(s)} converges uniformly on a set E if and

only if given ¢>U, we can find n, such that
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lgn(s) -g(s)| < ¢

for all nznO and for all s ¢ E.

Definition 5.2:

Let P
n,s

r

and PS, 1, be probability measures on Borel
subsets of a metric space, which depend on s, and C be the space of

real bounded uniformly continuous functions. Then

Pn,s 2 P

in s if and only if

| udPn S-u~———~e | udPS,

¢

uniformly in s for all u ¢ C.
Let I' be the matrix (81,...,9 } with 91 €8, 1=1,...,k.

We define the norm of a matrix A denoted by |A|, as

Al = (teaTa)”,

Define the information matrix
1P = ~e§ " (8), (5.3)

t

i.e. minus the second derivative of (5.1): and assume the following

conditions hold:

C1: Some nonrandom sguare matrices At(e), continuous in 8, exist with
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-1
{At(B)} ) 0

and such that

1 1.T

= - p - v
Wt(H) = {At(B)} Z[t(B) [{At(H)} ] —, wW(a),

where P(W(8) > 0) = 1.

C2: For all ¢ > G,

: -1 .
1) Sup [{A (8)) © AL(87) - I, | —= 0,

the sup being taken over the set
T .-
I{At(H)} (87-8)| < c,

and Ik is the identity matrix.

1.T

'ft——=20

. -1, +p _ TP -
ii) Sup |{At(9)} [Z[t(F) Z[t(B)][{At(B)} A

in probability, where the sup is taken over the set
1A, 878 -0)] <c, 1 ¢ic<k
t l A , X A .

C3: The partial probability measure Pg't, is (absolutely) continuous

with respect to At.

5,3 The Main Results,

In the proofs of the results, it 1is assumed that
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gsecond-order partial derivatives of fg exigt and are continuous a.s,

tor each 6e®. In addition assumptions Cl1 - C3 will be assumed to hold,

Define

Pegy - -1 .p

xt(e) = {At(G)} Ut(G). (5.4)
Then

Theorem 5.1:

P . Yo ;
(Xt(g) , Wt(G)J 7—v—4=% ({w(g)y" 7z , wigy;

where Z d N(3,1,), independent of W(8&),

Proof:
Wherever our reference ig clear, the fixed argument 8 1is

dropped, Thusg we write W for W(8).

£ - -'1 T{
Let 8 ¢ R and wt = Qt + {At s, at
1

Since AE *v~——3 0 hy C1, some to exigsts such that wherever

—3 § ag t —> ®,

0Ot , ¥, " ¢ and b, € 8.

Using the Taylor expansion series about Gt,

p _ P P, 1 P ~
Bt(wt) = Bt(Bt) + (wt g,) E (8 Yo+ (wt 8,.) B (¢ )(wt ] ) (5.5)
where
¢, = ath + (1~at)wt, D<at<1.

Putting
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_ a1 &P -
v A I8 (A

1,7
£ = }

and taking exponentials in (5.5), we have

p _ b _a TP LI U _
EL () = £ (8 )exp{(¥ =00 27" (6,) + 5($,-8,)" 27 " (6 ) (Y -6},

(5.7

But from the definition of wt above,

(wt«et>T eP7 (8,

1
n
e

by (5.1), (5.2) and (5.4); and similarly by (5.3) and (5.6),

1. o \T,pa~ _ L T,-1 p -1, T
20,078 7 () (Y, -0,) (5)s"A " I (4 )(A "}'s

1]

= —(%) sTVts.
Hence (5.7) may be written as
fE(Wt) = fg(@t) exp{sTXE - (%)STVtS}.
Therefore we have
exp(3s'V 51 2y = £P00 rexpis™X. (5.8)

But we know

. O . : 1T
1) {A (87D} I [{A (87D} ] === W)
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by Cl1 and C2.

ii) gn(s) www—wa g{s) in s if and only if gn(sn) —3 g(g) for

every sequence {sn} such that s, 7 S.

iii) Sweeting(1980) has proved that the distribution GB of W(8)
so constructed is continuous in 8. His lemma 3 is applicable
here with our assumptions since no conditions unique to the

full likelihood are used in its proof.

So Vt ——> ¥ under either {Gt} or {¢t}. Given 0<¢e<1, we may choose K

such that
PCIWl 2 K) € ¢
and
P(JW| = K) = 0,
Furthermore, since Vt::===$ W, and {|X] < K} is a Ge—continuity set,

PPt v | < K) —— Pr(W| < K). (5.9)
6, t

We define (QP'%) as the distributions (PE-%) conditional on ([V,| < K)
t
i.e. Qp’t has the density
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P
( ft(Bt)

PPty | <K
6, 't

: Vel <K

b
49y =

q otherwise,

Let U be a bounded function on the space of all kxk
matrices, Mk' continuous on |A} < K such that U(AR)=0 for |Al » K. Eé’p
shall denote the expectation under Qp't.

Multiplying (5.8) above by U(Vt) and integrating with
respect to At over (thI < KJ, which is permissible because of C3, we
have by (5.8) and (5.9),

el .
E[U(Vt)exp{éa Vts}j

*.p . Typ. -
E " {(UV, dexpi{s X[ }) =
t t t PRtV l < K
t

E(U(W) exp(%s Ws) )

PCIW] < K)

- EX(U(W)expihs Ws}), (5.10)

where E* is the expectation conditional on |[W]< K. Thig holds since
U(W)exp{%sTWS} is a bounded Ge—continuous function,
But for any Z d N(D,Ik) independent of W,

EX(UW)exp(sTW?Z)) = E (E[U(W)expis W?Z} |W])
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EX (UGHE[expls WZ) |W])

i

EX (U(W)expishs Ws}): (5.11)
since when Z d N(G,Ik), then
E[exp{aTZ}] = exp{%aTa}.

Using the uniqueness of bilateral Laplace transforms and the weak

compactness theorem, we have from (5.10) and (5.11)

p Y
(Xt , vt):::::>(w 7, W)I(IW| < K)

with respect to the family (Qp’t) of distributions., ‘I’ here is the
indicator function,

But ¢ was arbitrary so that unconditionally

P o %
(Xt , Vt) sy (W2, W)

and

xP

A
t o W) ——= W7 W

since V_ -W, — (0, from the definitions of Wt, Y

£ ¥ and ¢, .

t
This will be true for all 8t—--9 8. As well by lemma 3 in

Sweeting(1980), the distribution of (W%Z , W) is continuous in 6.

Therefore

P Ya
(Xt Wt) :=::=% (W72 , W),
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and the theorem is proved,

From this theorem, we may get an insight into the
agsymptotic joint distribution of the maximum likelihood estimator gs
from the partial likelihood, and Wt(Q). What is required is to relate
ab D
Bt to Xt(B).

We define
p _ T 2p _
Yt(B) = [At(e)] (Bt 8.

Before stating the theorem, we define what we mean by

uniform stochastic boundedness (u.s.b.) as used in Sweeting(1980).

Definition 5,3:

A family (Tt(e)) of }Xt~measurable functions is u.s.b, if
given any £>0 and a compact set K in ®, there will exist some ¢ and tO

such that
PB[ITt(B)l >} < ¢

for all t>t0 and 8¢K.

Sweeting(1980, Lemma 4) has shown that for a similarly
defined Yt(B) from the full likelihood, a local maximum likelihood
estimator exists so that Yt(e) is u.s.b. The proof uses no
restrictions unigue to the full likelihood. So we conclude that some
local maximum likelihood estimator from the partial likelihood exists

such that YE(Q) is u.s.b,
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Theorem 5.2:

There exists a local maximum BE of 2?(6) with probability

tending to 1 such that

P - p

xt(9> Wt(G)Yt(B) E— 0
in probability.

Proof:
Again, we shall drop the fixed argument 8 wherever our

reference is clear. Define
_ 2P ¢ &
Gt = (9t { =)

p
t

we have from (5,2) and (5.3)

gince the existence of 87 is already known. By the Taylor expansion

series on Gt’

p _ 4P ab
ufce) = 1L (8 - ),

for some I' = (8 8,). We know

1707k

p_ ,T.op _
vg = A8 - 8)

so that

p -1,p
Xp = AU
= a7l PP - g
t Tt Y%
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-1 +p ¢p~1T T 2D _
Iy fA 1 A(op - 8

¢ Tp Ay )

= A

DD
W (8, 8.1Y¢

H

where

W

N -1 p -1.T
t(&, 8:) = [At(e)) . [EAt(B)] 1.

t t
Moreover [At(Q)JT(91~8), 1¢i<k are u.s.b., Therefore from condition

C2(ii), we have

/\.p ~
Wt(G,Bt) wt(e)-———~§ 0.

But YE is u.s.b. Therefore the theorem holds on the set G, .

t
gft(Gt)-u—w-ﬁ 1 for the theorem

to hold in general. But this follows from Sweeting 's(1980, Lemma 4)

Now we need to show that P

result that 85 exists and is therefore finite,

Therefore the theorem is proved,

5.4 Application To Conditional And Marginal Likelihoods,

This section discusses an extension of the above results to
marginal and conditional likelihoods (Kalbfleisch and Sprott, 1973
Andersen, 1970, 1973). A comparison with Andersen’s(1970, 1973)

asymptotic results is also presented.

Andersen(197G, 1973) discussed the problem of making
inference from distribution models which depend on many accessory

parameters. It i1s suggested that the accessory parameters r be

vea, T
1 ' n
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eliminated by conditioning on their respective minimal sufficient
statistics, ti”"'tn‘ Thus inference 1is based on the conditional

likelihood

f(yl,...,ynlti,...,tn;Q),

where 8 is the structural parameter,

Kalbfleisch and Sprott(1973) give the marginal likelihood
based on the ancillary for the accessory parameter as f(a:8), a being
ancillary for the accessory parameter, r,

The preceeding theory is applicable to the marginal and
conditional likelihoods. In place of C3, we shall use the more
gpecialised:;

t

c,t (or PV

C4: The conditional (or marginal) probability measure PH 0

)
is (absolutely) continuous with respect to At‘

Under the regularity assumptions and conditions €1, C2 and
C4, the results and proofs follow identically. As indicated previously
the conditional and marginal likelihoods are special cases of the
partial likelihood.

The asymptotic results thus proved considerably strengthen
thogse derived by Andersen{(1970), We shall note the following

significant differences in the imposed conditions:

(i) The maximum likelihood estimator from the conditional
likelihood is called the "conditional maximum likelihood estimator"

and Andersen requires that this should be unique (assumption 1.2). The
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existence of a local maximum is sufficient for our discussion.

(ii) Assumption 1.3 in Andersen(1971) requires continuity in t
(the accessory parameter) of the mean and variance of the fog condi-
tional likelihood ratio for small variationg from the true value of €
(denoted 60) to BO. Furthermore, this variance must be finite for all
7. In our proof, mno conditions are placed on this fog likelihood
ratio,

(iii) Wwhile Andersen(1970) places regularity reqguirements on
the third derivative of the fog likelihood (assumption 1.4), no
restrictions whatsoever are imposed on the third derivative in our
case. In fact regularity assumptions on the first and second
derivatives suffice in our proof.

(iv) Some of Andersen’s(1970) continuity conditions in
assumption 1.5 are comparable to our continuity requirements in C2. We
require continuity of At(Q) and i[E(Q) in 8, where 2[5(6) is minus the
second derivative of the conditional fog likelihood. Note that 6 may
be a vector parameter with some accessory parameters., It is easy to
see that since similar conditions to Sweeting s(1980) apply in the
conditiornal likelihood situation, At(Q) will often be taken as
{E[:[E(@)]}%, when it exists. For the purpose of our proof it is not
even necessary that E[ZIE(B)] exist, Therefore whenever At(é) is chosen
as {E{:[i(@)}}% our condition €2 will be more general than
Andersen’s(1970) assumption 1,5, In fact Andersen further assumes that
E[I[E(G)] is positive in the accessory parameter and the unconditional
distribution is continuous in the accessory parameter as well,

(v) In the proof for asymptotic normality of the conditional
maximum likelihood estimator, Andersen requires that the sequence of

accessory parameters ICEAPYRRE should be bourded, We impose no such



requirement,

(vi) Andersen’s(1970) proof is restricted to a discrete
indexing parameter t while we allow for a continuous indexing
parameter as well,

(vii) Although not formalised into an assumption, it is clear
that Andersen’s(1970) proofs assume independence among the random

variables Yl'YZ"”' Qur results here permit dependence in Yl'YZ""

Clearly then, conditions Cl, CZ and C4 in the present
proofs in addition to the regularity assumptions we make, relax
Andersen’s assumptions considerably so that the asymptotic results are

proved in a much more general setting,

5.5 Examples.

In thig section we give some illustrative examples of the
partial likelihood., A further example to illustrate (vii) of section

5.4 is also presented,

Example 5,1 (Basawa and Prabhu,1981): An example in queuing theory.

In a one server queuing system partly observed till n
customers have departed, assume the service times of the customers are
independent and identically distributed, and independent of the
interarrival times: furthermore, either the interarrival time

distributions behave erratically or are unobservable.

Let F and G be distribution functions in a G/G/1 gueue with
probability density functions f and g, depending on parameters 8 and ¢

respectively i.,e. F is the distribution function for interarrival
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times depending on # while G is for the service times depending on ¢.

{uk, k»1} and {v k?1} are the observed interarrival and service

kr
times. Dn is the nth departure epoch go that during (O,Dn3, we ohgerve

N, interarrival times (ul,...,u

A N ).

A
The full likelihood for this model given by Basawa and

Prabhu (1981) is

N n
A
L = - X ) . )
n(f,g) { ? f(u},&})} {1 F(xn,el, ,83)} ? g(v},¢)
where
NA
X =X{(D)=D_ -7 u..
n n o n no7 3
The term {1-F(xn;61,...,8j)} ig the contribution of the incomplete

arrival interval when sampling is terminated at Dn'

Then T g(vj;¢) is a partial likelihood based on the set of

service times, V, in the seguence {Uj' vj}. Clearly this is free of

the accessory parameters 6 Bj and hence available for inference

1,...;
on the structural parameter ¢. When the requirement for independence
of the arrival times is removed, the partial likelihood is still

avalilable for inference,

Bagsawa and Prabhu(1981) further showed that the asymptotic
properties applicable to the full likelihood also apply to 11 g(vj;¢)
(which is essentially the full likelihood for the service times). 0f

course our results hold for this likelihood.
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Example 5.2:

Dawid(1975) raised questions about the inconsistencies in
inference caused by defining sgufficient and ancillary statistics in
the presence of accessory parameters, For data Y let f(Y:;w) ke the
probability density function in question with w=(8,¢) where ¢ is an

accessory parameter. Assume U and V exist such that

i

f(Y;w) = £QU;ECY|U;#) (5.12)

and

il

£4Y w) = £(Y[V:@)E(V: ) 5,13
i,e., U and V are respectively S-sufficient and S-ancillary for 8.

Then which of f(U;8) and £(Y|V:8) should be the hasis for
our inference on 687 To resolve this problem, Dawid(1975) introduced

’

the concept of "likelinesses.’ We assume that we can write

f(Y:w) = A(Y:8).B(Y:¢),

From equations (5.12) and (5.13), this separation is already possible.
Both £(U:8) and £(Y|V:8) are, as functions of 8, proportional to
A(Y:8). Any function proporticnal to A(Y:8) in 8 is called a
"likeliness’ for 8.

If we assume the observable variable Y can be transformed

to
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the corresponding partial likelihood from this transformation is

m . .
1 f(sjlx(33,5‘3‘1);s>,
1

assuming it does not depend on ¢ at all: i.e. the full likelihood

partitions as follows:

(j—l)'s(j—l) o(3-1)

MECY ) = T ECKIX ¢ T f(sj|x(3),h 8.
Whenever such ©partitioning is possible, the partial
likelihood is a "likeliness’ for 8 and as valid a basis for inference

as the marginal and conditional likelihoods.

It was pointed out earlier that Andersen’s results are

restricted to an independent sequence of random variables Y Y2 .....

'1.‘
Examples in which Yl’YZ"" is a dependent sequence, exist such that
our conditions widen the scope of application of these results., The

following examples illustrate this point,

We congider conditional exponential families discussed by
Heyde and Feigin(1975) in their discussion of Markov processes.

Let f(Xi[Xi_1:8) be the conditional probability density
function of Xi given Xi—l in a time homogeneous Markov process and

define

n
L (8) =igif<xi|xi_1;9).
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Then if 5n is the conditional maximum likelihood estimator from Ln(e),

and Z[n(8) is the conditional information given as

n déog L, (8) deog L, ,(8)
I_(0) =1 E( ( ko k42 g
k=1 da de k

-1
with :57 as the o-field generated by Xl""’xk' k21, then the
“k

conditional exponential family is characterised by the eguation

dfog Ln(G) -
—_— = ZIH(B)(Hn - 8},
dg

for all m1.

In fact the property

deog f(xi‘xi»1:

dé

&)

= p(OMH(x,_Im(x;,x; ;) - 6]

for some ¢, a function of 6 alone, and H, a function of the Xi's
alone, defines the conditional exponential families, m(xi,xi~1) is the
root of (d/dB)f(xilxi_l;H) = 0,

1f 2In(9) — @ ag n — «, the logical choice for At(G)
in our conditions Cl and C2 is {JIn(Q)}A. In fact Heyde and Feigin show

that
I.(8) =7} ¢(9)H(xi_1)
a.s. Therefore for this choice of At(ﬁ), we require that ZH(xi—l)

diverges a.s. This will certainly be so in a wide range of conditional

exponential distributions,
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Example 5,3:
One example of these familieg is the family of power series
distributions for the offspring distribution in a Galton-Watson

Branching process., If Z ...,Zn are the successive generation sizes, a

o’

power series distribution is of the form

Py = P(2y=]|Z=D)
a.kj
= 4201, A0
£(A)

where a 20 and £(A) = I ajlj.
It ig easy to see that the offspring mean and variance from

this distribution are respectively

. AL (A 2 dgogA 1
M= , 07 = { }o.
£ du
Then
Z.
3 J
£((Z.12, ,) = ——ere ¥ a, ...a,
1 N SUUOICE T
(£} =25 731 J
It is easily checked that the property
d -2
;;f(zi|zi-1) =g (Zi_uzi—l)f(zilzi-i)

characterises the power series family,
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Example 5.4:

A second example of the conditional exponential families is

from the estimation of parameter 8 in a first-order autoregression

where €, are independent and identically distributed normal random
variables with mean zero and variance 62, and €5 is independent of
Xi—l‘ If g(X) is the density function of €5, clearly

f(xilxi~1:6) = g(xi~8xin1),

and hence

dfog f(xiixi_i:a) L g’(xiw8xi_1)
S TS :
de g(xi—exihi)

Heyde and Felgin(1975) simplify this equation to

d 2 Xi
ag Bogi(xilxi_l:B) =C Xy [;-——
i-1

- 8) (5.18)

where

gle g " (e) - [g'(£1)32

¢ = -E{ I

gz(ei)

(5,18) characterises this family of distributions.
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6, ON JAGERD TEMMA ON THE MAXIMUM LIKELIHOOD ESTIMATORS FROM

RARTD.

OF THE DATA.

bl Introduction,

When plamming statistical inferences, 1t s inportant. to he
able to choose a sampling schewne which provides no wmore Lhan Bhe
eamential  data for the inferonces, Jagera(1975%)  proposed a Lewna
(2.13.2) under very general conditions to the effect thal a masx o
likelihood estimator which depends on only a subset ot the data
collected will be unchanged 1f only the relovant subseh 1o collecled,
Thig lemea iz incorrect as it stands, We shall show that Jagers” lemna
18 rvetrievable, subject to an additional suliiciency condition, but

does not extend to general exponertial families,

The theory of Dranching Processes will be wsed 1o
te the lemma. We shall investigate the effect of basing inderence

ahout the veproduction mean on either the generation sizes or on Lhe
more detatled intormation of the rumber of offspring for different
individualz 1n any qgeneration, The conclusions drawn  about  bhe
reproduction mean are identical for the exponential family in
canonical form for an offepring distribution hut nobt for general
exponential families,

¢

Jagers” lemma 2,13,¢ (Jagers, 19750

"Let {pg Jetr, o2y be a clasg of densities with

R LU
» U

respect to gome o Pinite meamuge g oon (3, A, Let T be zaome stalist

on this space (1,e, gimply a function on X)), If there is a maximom



Tikelihood estimator 8 of ¢ basged on observations in 2 and O8-qgoT for

goms o, thern g 13 a maximan likelihood estimator of § based on obaer -

1

‘ . . V o ‘ ‘ 1
vation of T(X), Xe2, the dengity of T being with respect to ol .

Felgin(l1977) put Forth the following counter examnple 1o

this lemma,

Examplie 6,1

4 .
L v

Let Xl""‘xm be chservaticns from the nocrmal digtribution,
/] )
RN

NCz, o7, Then the sample variance

- n "
a7 oY ({x, w)Y/n
: i

{

3
ig the magimun likelihood egtimator of o7 baszed on the {ull swmple.
oy - . - '
However  1f only 87 is known, the maximum likelihood estimator of of

. . ;. y . £ . . . , . .
1s {n/in-1)3¥s" whaich iz different, Jagers’ lemma states that these
should he the same,

In the following section it 1s shown that the lomma can be

repatved undec addilbional sutticiency conditions,

6.0 Moditied Version of Jagers' Lemoa,

There are Lwoe wmportant points ignored in Jagers” lemma:

(a) 1L is ascused (but certainly not stated) that % will be {ree
of any {accessory) parameter, o, say (assuming o 1o unknown), [f é
depends on o, then o too has to he estimaled resulbing in some
information loss, This ig comparabile to the case discusaed in

Williama(19823,



(h) Jagers does not clarity whether Tevential  element

T Ty s dree  of  the (structural) parameter, 8. This

thus we ohall restricth T to being

reguirement  1a

sufficient for 8, (or that the partial likelilhood 3t used shall be

Lrae of the acoessory parameter), 1.,e,

px(x;é,ﬂ} = pT{ij,G),p (zlt:a)

XiT

ancd

ES

(x°6,a) = pT{t;Q,J).p Loy,

px X!T(x

The condaitional diztribution given T zhould be free of 0, Then the

N

EN

maximan likelihood estimator, 8, 1¢ not influenced by this term,

*

Lo (modified) )

Let {pp

o Pe8, oex] be a clase of densities with regpect
f('

to g o-fimte measure 4 on (2 , A0, Let T he a sufficient gsteatighio o
§ on this space and 5, the maximum likelihood estimator for § hased on
the full saople in X and free of o (or if it depends on o, thern we
require that o he known) such that étguT tor some o, Then o 13 4
maximgn Likelihood estimator for & based on the cbaervabtion of 1T{X)

r

ne X,

Proot:

PG 5 18 the probability weasure on X with p-densily p
I I - o p ey e L T
P, 15 the probabilily measiwe on T(X) with o7 " -denzity 1

Take any B oin TOX), the range space of T and i=t A e,

Then



f pg O(y) uT-Iidy) = | pg,g(x) pldxy,

i ! A

$ o op . ) pladx)
'; q{‘ff(x.]’{s‘(h fiets s,
A

. S
= |1 (y) T (dyd,

This last equality 1s now valid hecause the new conditions imposed
s thal  the difterential  clement  ia offechively f{ree of i,
Nesides, any loss ot information due to estimation of o in 0 is
avorded, This compleles the prook.

N .

Note that 1f in the counter-example we had s;xg(xiwyodz/n,
i, known, then this lewmma would be satislied,

An objection may hbe raised that the reguirement of the
suf ficiency of T is too strong. 0f course the problem is tuarther
complicabed by the presence of an accessory parameber. There are
weaker definitions of cutficiency (in the presence of  an actessory
paraneter) that have been suggested. However, since 1n most of bhose
definmtions the conditional digtribution given T will not be {ree of
g, such "sulticiency’” will be unsuitable for this lemma, Alternabively
we  could have  appealed 1o agympteobtic sufficiency whereby
agymptobically the conditional distribution given T ig free of 8, &2
in example 6,1 iz asyaptobtically sulficient for 02 arel thus serves Lo

show that zuch velawxation of the requivement of aufficiency in the

lelnma will not do,

6,4 Application of the Modified Version of Jagers' Lemia,

[n thig section we illustrate the lemma with zome Lmportant

examples,



Brample 6,72 (Applicabtion in Branchivk Procesdges))

The resuitsz of Harrig(lU48) and Felgin(1977) on the masiean
Likelihood estimator of the reproduction mean in Branching Processes
serve to illustrate thig lemma,

. ) h ! .
Let Zi' =01, ...,n be the |7 generation size, and 4

A, L e e, 1, L0 e Lthe  snmber  of  wmembers in bhe

generalion with r obtspring, Harris(1948), using ;z:;r, andd  Feigine
i %

(1977), using 21, ghow that the Ononparametyic) maximun likelihood

eabimator of the offsprivg mean u is given by

uo= —, Y‘::l+z%+.'.+zv’
T i

Tt

regardless of the form of the offgpring distributon,

In the case of the power serieg ofispring diastributaon, §7 .

18 actually sufficient ftor g and thus the regsult 1 easy Lo inlerpret

to this parametric tamily. For then

where f(l§:Za1A3. Clearly p=Af (XY/f()), Hence

P2 7. ) = ) : . s
'j' j“l) o r N Cody
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ard the lLikelihood bazed on 2, 7 iz
o

n A
T P27 Y= ALY L, Y (6,17

-1 n 57 iy
ffooy )

which i the factorisation on the hagiz of the guffivient statistic,

Z.
1Ly

Similarly, the likelihood hased on Zir 1

" e Z , N z
! o Aa or Z, 1! ® AL&HW ni-1,1
L " - : 1B . - 4
I { ] P — 11 {{ e )

s vl f(A) @ r=t f(X)

a4 zimilar factorisation to (6,1) with the same term that involves A,
The sufficienl statistic 1o easily seen to determine that term: fihme

itlustrat ing the modified version of Jagers” lemma,

For o general form of the offzpring dosgtribution, and in

the parametric conbext. 1L is wmore difficult to illustrabe the lemma

with the results of Hercig and Feigin., For then



= 1050

)

e . ‘ (1 s Lo
by Tavlior’ s expansion; where [ = (d/da)y f,

’

On the basis ot Zj the likelihood is

5 11 A 1
MRz, ) = y 5o
'j;;;{ - o

1 R .
SR C e -
=I5 A ALZ LT,
4

321 120 : .

T we base our inference on 2. the likelihood in deneral s
B

2

&

No—3d 1 (fGay

n-1 7.1 o e AT Z5
_ - -4 T, I -
S —— oy - e

Specitic knowledge of either the form of distribubion

LA wrat deast bthe family from which 10 1s derived s necens

for wus to bhe more conclusive about the result since olherwise we do

not know Lhe sutficient statistie,
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Jagers’  lemma  was proved  on Lhe aosuapbion thabt  the

under Iyving  probabnlily  model ie parametric,  Felgin(19773 and
Harris {(1948)  results  were proved  for  nonpavanetbric  offspring
distributions showing that in that case, the maximum likelihood
estimators for u from either 7 ..., 7 cr from the wore detailed

=01, .., n=1r r=0 12, ..., are  adentical,

Z
g o
1

information  of
Although Feigin{l1977) and Horvis(l1948) place no regtriction on the
distribution model used, it will be evident from this chapter that
such generality iz not automatically applicable to the parametoic

diztribution models,

[et 128 be the probability that an individual produces o
oftapring, where Ur* i agsueed nonparametric, The joint probabaiity

funct ron of the «. d=0,1, ..., 0 o=l

{ < [ 28 \ (#r 2]

ff (2 70 were eufficient {or AP 6,721 would he

7
P
¥
) !

factorable into a product of a term free of B, and another Lorm which

dependz on the Z,u_'fs only throuwgh (72 ... ,,?) and which involven R
&y H

Ohwicusly (6.2) does rot permit thig {actorisabion in general except

for the special case when DD for all v, So (L, ... 'Z.r Pois onot
- 0’ N

sufficient for b in general, Congequently, our veraion of Jagers'

Temma  carnmot e used  fo explain Felgin =01977)  vesult  [or

nonparamety 1o families,


http:throuc.lh

16

I thig example, we look abt the application of thowe
vestilts bo the exponential family., The exponential family has Jdistri-

butions of the form
P,(z08) = al8inlz) expifTiz)), (6,33

The exponent may be nore complicated, =ay 08Tz, The siapler form

however, will do for our discussion.

’

Keiding(1975) hag shown that  Jagers” lemma will hold for

bhie case when

Bz

Rolzo8y = alh)y bhigle

b

tor then the maximun likelihood estimator for o is

as fopr the results of Harris(1948) and Feilginl198773,0 7. 1o hierr, oo
} . o E .y t{}‘) E . P e g ] . o e . . E e i ¥ y - I o
betore, Lhe | generation size and it is evident that };;j i subfi

crent in the model (6,33, Thic towm of 5, &0 called the cancenical forw

ol the exponential family,




Using (6,3) and since §p,(2:8y = 1,

e

—
—

goenerat

E(T(Z)) = —-a’(8)/a(8),

ard

a " g)
Var(TeZ)) = {(—— 1% - ————,

We now procesd to discuss

for which Jagerz” lemna docs not hold,

P

he oxponential family, it iz obviousiy not

Therelore 1t gerves to show that Jagers’” 1emma

cuponential families in canonical form

family torms in Jgenaral,

“gample £,470

Let the offepring digtvibution be

i,.,

Py ) = (y+ly Tz,

y=t,1,,,.,: 148« wherse

[

t } 102

Lo

Although the
of the
cannot

to apply to

Riewanm Zeta function, Wo may rowrite this

cony to show that

2o
N

(6.4

(:\X

(h

N

an example given in Keiding(/H)

example 18 brom

canonieal  folwm,
Froom

he extenwlod

all

expenent 1al

ydisboibutron an



e

(6.7

B

ggoniy+l),
£

.\
g
-

=

s
-~

e’
et

d

oen TOY) o fog(Y+l),

Let Yij' =01, ..., n-1: j:l,,.‘,Zj e the rnumber of

?
offaspring of the memnber  1n the 1 generat ion, Clearly, the

P &
fiey gerneration size 1s

Tt follows that the likelihood function from thig distri-

Inal 1om 12

A A ot Z
1 - A o n“/l g g T 0% - 53 oy 1 i {
L8y = [atd] exp{ &3 % Pogly, +105 (8.8

, - R . e , . L
with addy - 008yl °, Applying the factorisation theorem for cutfi-
crent statiztics to (6.8), 1t ia evident that Y7 is not sufficient

B
tor #: and conzequently, not sufficient for u(8). Therefore oup

versiion of Jagers' lewna 1o nol applicable for this example,

The Lorm of p(8) tor this example can be derived (rom (£, 67

e T
pay = hiYii; = alf)y ¥ mlmtl)
o r=A)

= al@){c(8-1) - L4y}



at

atf-1)
E(7,,.) = tzi[ELZi+llzj}j
= E(7 dul8)

1

*

= Tyt

Trhevetore, since u(H)Y 1

4]
ey

Q=1 pn(ay-1

)

ey

“*1gg

Ix

peey -

dagm Yp—— <

It follows that aince E(E?IZ_:l):y{Q},
G :

Fhern

From (6.4) and (&.7) we can deduce that

a’' (8

vidYy = B(Rog{Y, +1)] =
) 408

e o8
ally 3 om o formn,

and from (6,%) and (6.7,



oy

o

it
i

CUraY = Var[@og{Yij+l)]

@ o]
R 2 O L
= oaldy §om ifﬁoqm) (al®) ¥ m " fogm)”,
e

m=1

We establish the following proposition,

Propogition 6,10
Iri the dizgteibution model (6.6,

22.009(Y, i) 4 3
( ‘ —w(8)) —— N(D,e7 (0,

A
‘ =

A I )
O =1 ¢ vy "
I ]
O -1

conditional on non-exbinet ton,

secquence  of

J:l:---,wg.
A

(foal¥. +13), 1=0.1,...,0~1:
i) : ,
Thus we can

dependent and 1dentically distributed random variables.

apply the law of large numbers for random sums 1o det, rconditional on
nomr-extinction,
Ty BoglyY, +1) _
17 &, A
. > WiE ),

AR SO & A

O -1
ot sunmabt tons of Q(KJ(Vl i+l Yoin the

the nunber of
Limit

LS

since 2 o+, ., 47
O n--1
Tt 0 :
(4ol ) converges a.s,

to & proper

numerator and (p(8))
law which 1s a.s. positive,
the central limit theorem for random sums it follows

BV

that . conditional on non-extinction,


http:identit�:ctl.ly

-z -

—
s
:
[
.
g
i
o)
¥l
-
L’
H
.
=
-

Q_]
vi81) —=— N(D, 1)
R

»

thiz proves the proposilion,

We chall now diccouss the derivation of the marzivmuam likeli-
hood estimator, pd8). From {6.8),

the maximuan likelihood sstimator for
f will be the solubtion to Lhe equation

oy Lﬂ(H}

= U, T g ) Y} Rog(Y +1) = O
44 © n-1 : L

artsy gy fogly, 1)

2

. (6,9
a8 7 -

R

Therefore in practice, the 8 value sabisiying squalion (6,91 alse

obtaings for us g8, From the general Jikelihood (6,83, the right hand

zide in (6.9 13 a Dunction of & sulficient gtatislic tor #, namely

+“'+Zr 1 XZQOQ(Yii+3)). In fact, equation (6.9) gives bhe maximim
v 17

Il

likelihood estimator for y{@)fu{ﬁuq(¥1jr1)},

As well from (6,8) ]

. we know that Y fog(Y. 1) i fmintmal)
13

aufficient [or 8 (in the egporential digtribationy, Lelweann and
Sohef e (1950, theorem  5.1)

ek

externded the Rao-Plackwell  Lheoren
tRao, 1945 Blackwe1l 19470 proving that ¥V oig a mininum varioagee oo
mator of 1ts expected value (MVUE) if and only 11 1t 12 o fimchion of




the (mimmal) suffictent stabishic, Since YPeogdy . 1) 10 a funetaon
11

aof axﬁ+.,,4xﬁ 1 ZEE@gLY§j+I)}, A sufficient statistic {arwd 1t 015 o

fart minimal sufficient) for #, the above menbtioned results suggest
that  asymptotically, it chould derive for us a minimus  var iance
unthiaged ealimator {for v(d),

We may extend thig application of the Lehmarn-Scholifd

theorem to permit minimum variance unhiased estimaltion for pwlfy, Fop

Iet Vo be any unbiased estimate for p08): and we wrate SﬁXXQOQ(Y1;+1§,
]

Define T=E(VISY, Then it follows (Con and Hinkley, 1974, paye 2580597

that T 1g a minimum variance unbiased estimator For #1087,

A gimilar reasult Lo that in propomition 6.1, and following

[
e,

the game line of yroof,

+ A .
(e ()] ——— N1,

ST H(Zlfzo”liuufﬁﬁ and Uar(ﬁ1fzwfl)uo£(91. The  Lehmann ool

Schel{A01950 ) theorem 5,1) vesult suqgests thab oY (8 < o“0g), In fact

el P

we can eotablish that this inequality holds and g abyor

511 "| s

sl s

In the offspring Ao +Fuihat ion model (6,67,

“ R

3

g vaI[QQQ(Yijflﬁi STy = var(z, 17 =10,




Lo

¥

it

Firal of all, we find the form of (8. Wo omit the

in the summabions wherever they are clear. We have

b
i

- “ oy
E(Z;iz,flﬁ = E(Yi]) = al®) ¥ o hwl)

1

<aldy Jotm UrGarl) £oaldy Yy lmdl)
i mei)

al@y(rin oy - Z2Ea-1) 0 (o,

Thecw o o,

LI & ) i /r
ymam )"

et
=
o
<
e
ot
i Nt B
=
~
=
-

and we compare this with

e 1 “

i ' A _ L
Cloagm)™ - [m " Pogmi”™

(e 3 m

T

"y

- "y
The numerator o o"(8) c“(8) can be written as

=y

- AN { B L e g.7 . -f L0
(Yo “1oym im® (dogm)™T - (Lymam 17 (¥m pogm]”)

ey e B o -fl woe ol . :
Laf =) (2m G- 2agm) (meogm) )~ (S Go-Rogr) V(S © (nkPogm) ) .

6. 1h



We put

TM = M-2ogM

SM = M+fogM,

Clearly, TN and SM are both increasing functions of M, We define the

probability function of M a=s

3

P(M=m) = kmmO, m=1, 2.,

where kwlzim_g, Note that E(T) and F(S) exist. Tf we malliply (6.10)

¥

; S AP
by k“, it ia eazy to see that the numerator for k“(a"(@)-c™(2))

hecomes

F(T 5 ) - F (G
n(TMVMJ L{TM)E{M

3

) = Lovtrﬁ,hm,

M

= Vari{M) - Vac{fogM) > {1,
This proves the proposition,

Tt seemns reagonable theretore, that inference shout p(8) in
the model (6.7) be carrvied cut on the basis of the minimal sufficient
atatistic, fZQOQ(Yij+TJ, Such values of 8§ as are appropriate in the
eabimation of v{8), will be equally appropriate in the egstimabtion of

w(gn,



'

Tt should be noted that, since cU et nY ) the advantage

in obtaining the information conbained in Fhe qu(Yi,+1}, HESRSTH

U<jiZ , rather than that in the Zi’ Qeidn,  is guite ¢lear . This

.

appears, at face value, to contradict the nonparametric resulbs ot
Harr1s(1948) and Feiqgin(1977) which lead one to expect that there
should be no advantage in sampling any more than the Zj, Hevdn, I
fact, there ig a subtle ditference between the porametric and ronpara

metric maximum likelihood approaches and they are not equivalent, Many

authurs have been in error on this point.
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