
EFFECTS OF REPETITIVE DNA AND EPIGENETICS
ON HUMAN GENOME REGULATION

A Dissertation
Presented to

The Academic Faculty

by

Daudi Jjingo

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in Bioinformatics in the
School of Biology

Georgia Institute of Technology
August 2013

Copyright c© 2013 by Daudi Jjingo



EFFECTS OF REPETITIVE DNA AND EPIGENETICS
ON HUMAN GENOME REGULATION

Approved by:

Dr. I. King Jordan, Advisor, Advisor
School of Biology
Georgia Institute of Technology

Dr. Soojin Yi
School of Biology
Georgia Institute of Technology

Dr. Greg Gibson
School of Biology
Georgia Institute of Technology

Dr. Jung Choi
School of Biology
Georgia Institute of Technology

Dr. Leonardo Mariño-Ramı́rez
National Center for Biotechnology
Information
National Library of Medicine, National
Institutes of Health

Date Approved: June 19, 2013



ACKNOWLEDGEMENTS

It is with great pleasure that I express my deepest gratitude to my advisor and mentor,

Dr. I King Jordan. Scarcely have I ever learnt as much as I have under his tutelage

over the years of my PhD studies. He has immensely developed my academic work

ethic, my critical and conceptual thinking, my analytical writing and my collaborative

ability. These are skills that will forever follow me and for which I will eternally be

thankful to him.

My appreciation also goes to my other thesis committee members; Dr. Greg

Gibson, Dr. Soojin Yi, Dr Jung Choi and Dr Leonardo Mariño-Ramı́rez. They

have constantly provided useful research advice and guidance that has significantly

improved the quality of my research and my ability to communicate it. They have

been joined in this by other helpful faculty – Dr Frederick Vannberg, Dr Nathan

Bowen and Dr Linda Green. I have been very fortunate to have them as my partners

on my PhD journey.

I would also like to thank my academic and research colleagues in the Jordan Lab;

Dr Andrew Conley, Dr Jianrong Wang, Dr Lee Katz and Dr Ahsan Huda. They have

provided a lot of advice and support over the years and have been especially helpful

in fostering my technical skills in programming, literature evaluation and statistical

analysis. Above all, I have enjoyed their friendship and warmth. Iam also grateful to

have known all the very many other masters students that I have met in the Jordan

Lab. They have each immensely contributed to my success.

My work has been generously supported by the Fulbright foundation, the Carnegie

foundation and the Georgia Institute of Technology. Iam indebted to them. Appre-

ciation also goes out to my dear friend Dr. Frederick Balagadde, who has constantly

iii



provided priceless advice and mentorship that has meant a lot of difference in my

academic and social endeavors as well as my personal development. Dear friends

Adrienne Little, Claire Dell, Katende Kinene, Monica Kinene, Al Lacour, Alex Gra-

ham, Charles McKnight, Chuck Emerson, my roommate Waly Ndao and the Georgia

Fulbright chapter have all profoundly enriched my social life in Atlanta. I will always

cherish the special social moments I have shared with them.

Last but not least, I profoundly thank my family. My brothers Kalule, Kibirige,

Kabuye, Bewaayo and my sisters Namayanja and Nabunnya, together with my mother

Damali Sserubidde and Father Daudi Sserubidde. Their unconditional love has meant

the world. Mwebale nyo banange.

iv



TABLE OF CONTENTS

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . iii

LIST OF SYMBOLS AND ABBREVIATIONS . . . . . . . . . . . . . xv

SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xviii

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 TE environment and gene expression regulation . . . . . . . . . . . . 1

1.2 Exaptation of MIRs into enhancers . . . . . . . . . . . . . . . . . . . 2

1.3 Diversity of cis-regulatory elements . . . . . . . . . . . . . . . . . . 4

1.4 The DNA methylation paradox . . . . . . . . . . . . . . . . . . . . . 5

1.5 Overview of dissertation . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 EFFECT OF THE TRANSPOSABLE ELEMENT ENVIRONMENT

OF HUMAN GENES ON GENE LENGTH AND EXPRESSION 9

2.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3.1 Defining gene loci . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3.2 Determining genic and intergenic TE fractions . . . . . . . . 13

2.3.3 Gene expression data . . . . . . . . . . . . . . . . . . . . . . 13

v



2.3.4 Measurement of gene length (GL) and gene expression param-

eters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3.5 Comparative analysis of GL, TE gene fractions and gene ex-

pression parameters . . . . . . . . . . . . . . . . . . . . . . . 14

2.3.6 Gene expression clustering analysis . . . . . . . . . . . . . . 15

2.3.7 Statistical analyses used . . . . . . . . . . . . . . . . . . . . . 15

2.4 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4.1 TE environment of human genes . . . . . . . . . . . . . . . . 16

2.4.2 TE fractions are related to gene length . . . . . . . . . . . . 18

2.4.3 TE gene environment and the selection hypothesis . . . . . . 22

2.4.4 TE gene environment and the genomic design hypothesis . . 24

2.4.5 L1 elements and gene expression levels . . . . . . . . . . . . . 27

2.4.6 MIR elements and tissue-specific gene expression . . . . . . . 29

2.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.6 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3 MIRS REGULATE HUMAN GENE EXPRESSION AND FUNC-

TION PREDOMINANTLY VIA ENHANCERS . . . . . . . . . . 35

3.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

vi



3.3.1 Co-locating enhancers and MIRs . . . . . . . . . . . . . . . . 38

3.3.2 Histone modification profiles . . . . . . . . . . . . . . . . . . 38

3.3.3 Transcription factor sites and binding analysis . . . . . . . . 39

3.3.4 Relating gene expression and tissue-specificity to enhancers-

MIRs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.3.5 Functional analysis . . . . . . . . . . . . . . . . . . . . . . . 41

3.4 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.4.1 MIRs are highly concentrated in enhancers . . . . . . . . . . 42

3.4.2 Numerous MIRs are autonomous enhancers or are linked to

enhancers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.4.3 MIRs are enriched for TFBSs . . . . . . . . . . . . . . . . . . 47

3.4.4 Enhancer-MIRs influence gene expression and tissue-specificity 50

3.4.5 Functional significance of enhancer MIRs . . . . . . . . . . . 51

3.5 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4 COMPOSITE CIS-REGULATORY ELEMENTS WITH BOTH BOUND-

ARY AND ENHANCER SEQUENCES IN THE HUMAN GENOME 55

4.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.3.1 Boundaries, enhancers and composite elements . . . . . . . . 57

vii



4.3.2 Chromatin analysis . . . . . . . . . . . . . . . . . . . . . . . 58

4.3.3 Gene expression analysis . . . . . . . . . . . . . . . . . . . . 59

4.3.4 Gene set enrichment analysis . . . . . . . . . . . . . . . . . . 59

4.4 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.4.1 Composite regulatory element discovery approach . . . . . . 60

4.4.2 Enrichment of composite boundary-enhancer elements in the

human genome . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.4.3 Composite boundary-enhancer elements possess unique regu-

latory features . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.4.4 Composite boundary-enhancer elements enhance cell type-specific

gene expression . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.4.5 Potential functional significance for composite boundary-enhancer

elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.6 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5 ON THE PRESENCE AND ROLE OF HUMAN GENE-BODY

DNA METHYLATION . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.3.1 Human gene loci . . . . . . . . . . . . . . . . . . . . . . . . . 71

viii



5.3.2 DNA methylation . . . . . . . . . . . . . . . . . . . . . . . . 71

5.3.3 Gene expression . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.3.4 RNA Polymerase II (Pol2) . . . . . . . . . . . . . . . . . . . 72

5.3.5 DNaseI Hypersensitive Sites (DHSS) . . . . . . . . . . . . . . 73

5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.4.1 Meta-analysis of genome-wide methylation, expression and chro-

matin data sets . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.4.2 A non-monotonic relationship between gene-body methylation

and human gene expression . . . . . . . . . . . . . . . . . . . 74

5.4.3 Gene-body methylation represses the initiation of intragenic

transcription . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.4.4 Gene-body methylation, transcription and open chromatin . 79

5.5 discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.6 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6 CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

A SUPPLEMENTARY INFORMATION FOR CHAPTER 2 . . . . 94

B SUPPLEMENTARY INFORMATION FOR CHAPTER 3 . . . . 98

C SUPPLEMENTARY INFORMATION FOR CHAPTER 4 . . . . 116

ix



D SUPPLEMENTARY INFORMATION FOR CHAPTER 5 . . . . 122

PUBLICATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

x



LIST OF TABLES

1 Relationship between the local TE environment and gene length . . . 18

2 Effect of GC-content on the relationship between Alu genic frations

and gene length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3 The relationship between TE fractions, gene length and gene expression 23

4 Effect of GC-content on the relationship between L1 genic fractions

and gene expression . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5 Relationship between genic TE fractions and tissue-specificity in mousea. 33

6 Genome-wide expression and chromatin datasets analyzed in this study 74

ST1 Length distribution of TEs within genes . . . . . . . . . . . . . . . . 94

ST2 Enrichment of enhancer-MIR associated genes in several K562 related

functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

ST3 Enhancer-MIR associated genes involved in erythropoiesis . . . . . . 101

ST4 Lists of genomic locations of core loci of MIR-enhancers . . . . . . . . 115

ST5 Copmposite cis-regulatory elements in CD4+ cell-line . . . . . . . . . 121

xi



LIST OF FIGURES

1.1 Aspects of human genome regulation covered by thesis . . . . . . . . 7

2.1 TE fractions in and around human genes . . . . . . . . . . . . . . . . 17

2.2 Relationships between the Alu fractions of human genes, gene length

(GL) and GC-content . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3 TE fractions, GL and the peak level of expression (PE) . . . . . . . . 25

2.4 TE fractions, GL and the breadth of expression (BE). . . . . . . . . . 26

2.5 TE fractions, GL and tissue-specific expression (TS) . . . . . . . . . . 28

2.6 The local frequency maxima of TE densities around the transcription

start sites (TSS) of tissue-specific genes . . . . . . . . . . . . . . . . . 31

2.7 Heatmap showing co-expression of MIR-rich genes . . . . . . . . . . . 32

3.1 MIRs are highly concentrated within enhancers . . . . . . . . . . . . 44

3.2 The chromatin environment of MIR-enhancers is similar to that of

canonical enhancers in K562 . . . . . . . . . . . . . . . . . . . . . . . 46

3.3 Presence and activity of transcription factor binding sites in enhancer-

MIRs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.4 TFBSs occurring in enhancer-MIRs . . . . . . . . . . . . . . . . . . . 49

3.5 Effect of enhancer-MIRs on gene expression and tissue specificity in

the K562 cell-line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.6 Activity of enhancer-MIR associated genes in erythropoiesis . . . . . 53

xii



4.1 Composite regulatory elements and their features in the human genome 61

4.2 Composite regulatory elements and the chemokine signaling pathway 66

5.1 DNA methylation levels around the TSS, gene-body and TTS across

five gene expression level bins . . . . . . . . . . . . . . . . . . . . . . 76

5.2 A non-monotonic relationship between gene-body DNA methylation

and gene expression . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.3 Relationship between DNA methylation and promoter activity levels . 80

5.4 Comparison of length and DNA methylation attributes of intronic pro-

moters and intronic sites without transcription initiation . . . . . . . 81

5.5 Comparison between genic and intergenic average (± standard error)

DNA methylation levels in GM12878, K562 and HepG2 cell-lines . . . 82

5.6 Relationship between chromatin environment and gene expression levels 83

5.7 Model showing how interactions between chromatin openness and Pol2

density specify gene-body DNA methylation . . . . . . . . . . . . . . 86

5.8 Decreasing levels of gene body methylation, starting from mid-levels of

gene expression are correlated with increasing levels of intronic expression 87

A.1 Demarcating transcriptional units on the genome and Mapping TEs to

TUs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

A.2 The relationship between TE fractions of genes and GL . . . . . . . . 96

A.3 Relatedness of tissues in which MIR-rich genes are maximally expressed 97

B.1 MIRs are highly concentrated within enhancers . . . . . . . . . . . . 98

xiii



B.2 The chromatin environment of MIR-enhancers and enhancer-MIRs is

similar to that of canonical enhancers . . . . . . . . . . . . . . . . . . 99

B.3 Histone modifications patterns around enhancer-MIRs and MIR-enhancers

are congruent to that around canonical enhancers . . . . . . . . . . . 100

B.4 Presence and activity of transcription factor binding sites in enhancer-

MIRs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

B.5 Effect of enhancer-MIRs on gene expression and tissue specificity in

the HeLa cell-line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

C.1 Composite regulatory elements and their features in the human genome 116

C.2 Composite regulatory elements and the KEGG chemokine signaling

pathway . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

C.3 Composite regulatory elements and Voltage-gated potassium ion channels118

D.1 Gene expression-based percentage DNA methylation around the TSS,

gene-body and TTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

D.2 A non-monotonic relationship between gene-body DNA methylation

and gene expression . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

D.3 The bell shaped relationship between gene-body DNA methylation and

gene expression is independent of gene length . . . . . . . . . . . . . 124

D.4 Comparison between genic and intergenic DNA methylation levels in

HeLa-S3 and H1-hESC cell-lines, Error bars are standard errors . . . 125

D.5 Relationship between gene expression and- . . . . . . . . . . . . . . . 126

xiv



LIST OF SYMBOLS AND ABBREVIATIONS

Symbol Description

CD4+ CD4+ T cell

ATF3 Cyclic AMP-dependent transcription factor 3

BE Breadth of expression

CAGE Cap analysis of gene expression

CEBP Ccaat-enhancer-binding protein

ChIP − seq Chromatin Immunoprecipitation and Sequencing

CJUN Jun Proto-Oncogene c-jun transcription factor

CTCF CCCTC-binding factor

DACS Digital analysis of chromatin structure

DNA Deoxyribonucleic Acid

DHSS DNase1- Hypersensitive site

DNMT1 DNA methyl transferase 1

ENCODE Encyclopedia of DNA elements

GEO Gene expression omnibus

GL Gene length

GO Gene Ontology

GSEA Gene set enrichment analysis

H3K27ac Histone H3 Lysine 27 acetylation

H3K27me3 Histone H3 Lysine 27 tri-methylation

H3K36me3 Histone H3 Lysine 36 di-methylation

H3K4me1 Histone H3 Lysine 4 mono-methylation

H3K4me2 Histone H3 Lysine 4 di-methylation

xv



Symbol Description

H3K4me3 Histone H3 Lysine 4 tri-methylation

H3K9ac Histone H3 Lysine 9 acetylation

H4K20me1 Histone H4 Lysine 20 mono-methylation

HAIB HudsonAlpha institute for biotechnology

HBA1 Hemoglobin, Alpha 1

HBZ Hemoglobin, Zeta

HMM hidden Markov model

ISGF3 Interferon-stimulated gene factor 3

Kb Kilo base-pair

KEGG Kyoto Encyclopedia of Genes and Genomes

L1s LINE 1 elements

LCR Locus control region

LINE Long Interspersed Nuclear Element

LTR Long Terminal Repeat

Mb Mega base-pair

MEME Multiple EM for motif elicitation

MIR Mammalian Interspersed Repeat

miRNA microRNA

mRNA messenger RNA

MSigDB Molecular signatures database

NFE2 Nuclear factor (erythroid-derived 2)

NGS Next generation sequencing

PCR Polymerase Chain Reaction

PE Peak expression

PIK3 Phosphatidylinositide 3-kinase

PLIER Probe logarithmic intensity error

xvi



Symbol Description

PMID Pubmed identification number

PolII RNA polymerase II

PolIII RNA polymerase III

Refseq Reference Sequence Database

RIKEN The Institute of physical and chemical research, Japan

RNA Ribonucleic Acid

RNAi RNA interference

RNA− seq Whole genome transcriptome sequencing

RRBS Reduced representation bisulfite sequencing

SHANK3 SH3 and multiple ankyrin repeat domains 3

SINE Short Interspersed Nuclear Element

STAT1 Signal transducer and activator of transcription 1

SVM Support vector machines

TCR T-cell receptor pathway

TE Transposable Element

TFBS Transcription factor binding site

TFIIIC Transcription Factor for polymerase III C

tRNA Transporter RNA genes

TS Tissue-specificity

TSS Transcription start site

TTS Transcription termination site

TU Transcriptional unit

UCSC University of California, Santa Cruz

USF2 Upstream stimulatory factor 2

UTRs Untranslated regions

ZNF274 Zinc Finger Protein 274

xvii



SUMMARY

The highly developed and specialized anatomical and physiological character-

istics observed for eukaryotes in general and mammals in particular are underwritten

by an elaborate and intricate process of genome regulation. This precise control of the

location, timing and amplitude of gene expression is achieved by a variety of genetic

and epigenetic tools and mechanisms. Such tools include cis- and trans- transcrip-

tional regulation, epigenetic marks and chromosomal conformation in the nucleus

[78, 79].

While all these regulatory mechanisms have been extensively studied, our under-

standing of the complex and diverse associations between various epigenetic marks

and genetic elements with genome regulatory systems has remained incomplete. How-

ever, the last few years have seen a profound development in two areas that have sig-

nificantly improved the depth and breadth to which their functions and relationships

can be understood; 1) Next generation sequencing (NGS) and 2) its application in

the genome-wide profiling of multiple DNA elements and functional factors. These

include suites of histone modifications, transcription factors, DNA methylations and

DNAse hypersensitive sites in various mammalian tissues by the ENCODE consor-

tium and other research laboratories.

The objective of this thesis has been to apply bioinformatic computational and

statistical tools to analyze and interpret various recent high throughput datasets from

a combination of Next generation sequencing and Chromatin immune precipitation

(ChIP-seq)experiments. These datasets have been analyzed to further our under-

standing of the dynamics of gene regulation in humans particularly as it relates to

repetitive DNA, cis-regulation and DNA methylation. The thesis thus resides at the

xviii



intersection of three major areas in the overarching domain of human genome reg-

ulation; transposable elements, cis-regulatory elements and epigenetics. It explores

how those three aspects of regulation relate with gene expression and the functional

implications of those interactions.

From this analysis of high throughput datasets, the thesis provides new insights

into; 1) the relationship between the transposable element environment of human

genes and their expression, 2) the role of mammalian-wide interspersed repeats (MIRs)

in the function of human enhancers and enhancement of tissue-specific functions, 3)

the existence and function of composite cis-regulatory elements and 4) the dynamics

and relationship between human gene-body DNA methylation and gene expression.

The specific advances of my research in the field of human genome regulation are

summarized as follows:

Research advance 1: With both TE fractions and GL being highly correlated

to gene length, this study evaluated the two parameters together and teased apart

their relative contributions to the gene expression parameters of tissue-specificity and

expression levels. By showing that GL is strongly correlated with overall expression

level but weakly correlated with the breadth of expression, this study elicited evidence

for the selection hypothesis [23] that attributes the compactness of highly expressed

genes to selection for economy of transcription as opposed to the genomic design

hypothesis [135]. Infact, TE fractions of human genes were shown to be more anti-

correlated to gene expression levels, suggesting that TEs, rather than GL might be

more important targets of selection for transcriptional economy. Finally, MIRs were

found to be the only TEs that positively associate with tissue-specific gene expres-

sion. Relevance of TEs environment for gene expression was confirmed and distinct

mechanisms by which they may contribute to genome regulation were adduced.

Research advance 2: Mammalian-wide interspersed repeats (MIRs), previously

shown to be related to tissue-specific gene expression [61], are shown to execute this

xix



function primarily through enhancers. This study found MIRs to be significantly

enriched within enhancers and reports many novel MIR-derived enhancers. Indeed,

the density of enhancer-MIRs around genes is shown to be significantly related to

both their level of expression, their tissue specificity and to be involved in tissue-

specific cellular functions. MIRs within enhancers are shown to possess significantly

higher numbers of transcriptional factor binding sites (TFBSs) relative to the genomic

background, a finding that might explain their co-option into enhancers and thus their

longstanding conservation and wide distribution in the mammalian clade.

Research advance 3: This research adduced evidence that confirmed previous

postulations that distinctions between different classes of cis-regulatory elements may

not be definitive and that different elements might share regulatory features and

mechanisms. Taking boundary elements and enhancers within the human CD4+ T

cells as examples, we identified 174 composite cis-regulatory elements, for which both

enhancers and boundary elements are co-located. These composite cis-regulatory

elements possess unique chromatin environments and regulatory features and are

revealed to facilitate cell-type specific functions.

Research advance 4: This research used the approach of a meta-analysis of

new high throughput chromatin, methylation and gene expression datasets to address

aspects of the long standing DNA methylation paradox [63]. Contrary to previous

knowledge [2, 4, 56, 83, 88, 108], it is shown that the relationship between gene-body

methylation and gene expression levels is not linear but actually non-monotonic (bell

shaped). These results confirm that gene-body DNA methylation does serve to repress

spurious intragenic transcription. However, they also illustrate that role to be only

epiphenomenal, with gene-body methylation levels being predominantly determined

by the accessibility of the DNA to methylating enzyme complexes rather than by an

evolutionary adaptation to minimize the spurious intragenic transcription.

xx



CHAPTER 1

INTRODUCTION

1.1 TE environment and gene expression regulation

A gene’s architecture and context includes the nature and conformation of its pro-

moter region, its 5’ and 3’UTRs, the numbers and lengths of its exons and introns, its

epigenetic modifications and its genomic surroundings, i.e. its upstream and down-

stream neighborhood. All the above components of a gene’s architecture are hugely

influenced by the DNA sequence composition of those components. The relationship

between gene architecture and gene expression has been and remains a subject of

continuing interest for genome analysis.

As such there have been several studies to try and understand how a gene’s ar-

chitecture, particularly its length (a parameter which captures most of its features),

affects its expression. Forexample, there are currently two leading hypothesis ex-

plaining the relationship between gene length and gene expression. The first was

proposed by Castillo-Davis et al. in 2002. Their study observed that in humans and

worms, gene length, as represented by intron length, was negatively correlated with

the level of gene expression. They explained this trend, using their “selection hy-

pothesis” [23]. This hypothesis posits that highly expressed genes are shorter due to

selective forces that operate in favor of minimizing the energy and time expended dur-

ing their transcription. Subsequently, this inverse relationship between gene length

and expression level was confirmed by a number of studies, providing support for the

selection hypothesis [27, 28, 33, 87, 114, 128]. The second hypothesis [136], known

as the “genomic design” hypothesis, explains the shorter length of highly expressed

genes in view of the fact that these genes also tend to be broadly expressed across
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numerous tissues. This broad expression implies simpler regulation, which requires

fewer regulatory sequence elements (and hence shorter genes), than genes expressed

in a more narrow tissue-specific fashion.

However, the human genome is replete with transposable elements, with almost

half of it being constituted by them [82, 132]. Several research strands have also

shown these TEs to impact gene expression in multiple ways. Indeed, while most

TEs reside outside of genes, there is a considerable fraction within introns and a

few within exons. Consequently, TE gene fractions are highly correlated with gene

length[61]. As such, the effect of gene length on expression as explained by the above

two leading hypotheses cannot be fully understood without assessing the contribution

of TEs to that relationship. This thesis thus jointly analyzes TEs and gene length in

order to tease apart the relative contribution of each on gene expression levels. Infer-

ences from that analysis are then used to first evaluate the validity of the selection

hypothesis vis a vis the genomic design hypothesis. Secondly, that analysis enables

the elucidation of a possible mechanism by which selection might work to optimize

the relationship between gene length and gene expression. Additionally and finally,

since tissue-specificity and breadth of expression are central reference points for both

hypotheses, this thesis uncovers and considers the special relationship between a spe-

cific class of TEs (Mammalian-wide interspersed repeats - MIRs) and tissue-specific

gene expression.

1.2 Exaptation of MIRs into enhancers

Different classes of TEs have been shown to have unique effects on specific aspects

of gene expression. Forexample, weakly expressed genes generally contain low SINE

and high LINE densities [133] while the most highly expressed human genes are

enriched for SINEs (Alu) [133] and depleted for L1 elements [51]. Indeed highly and

broadly expressed housekeeping genes are identifiable by their TE-content which is
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rich in Alus and poor in L1s [34]. Consequently, TEs are known to influence distinct

biological functions [15, 16]. As such, the distribution of TEs is regulated and thus

TEs are non-randomly distributed in mammalian genomes. The transposition of TEs

across genomes enables the replication and spreading of their features, which contain

regulatory and coding sequences. This puts such sequences in the bodies or vicinity

of genes found in the neighborhoods of the TE transposition loci, resulting in the

formation of regulatory networks [39] and multiple other cases where TEs serve as

coding or regulatory sequences for genes[48, 92]. This process, by which a formerly

selfish or parasitic element sequence is utilized to provide regulatory and/or coding

functions that increase the host’s fitness is known as exaptation. There are thus three

different fates that could occur to transposed TEs. First, they could be exapted if

transposed to locations where they serve to improve the hosts fitness. Secondly, they

could be gradually removed from the genome if their transposition occurs in locations

where their effects are deleterious. Thirdly, they may be kept in the genome if they

land in neutral locations where they are neither beneficial nor deleterious. In this

later case, they often accumulate epigenetic features like DNA methylation to prevent

further transposition and eventually lose their identity and potency through random

mutations. Now, Mammalian-wide interspersed repeats (MIRs), an ancient family of

tRNA derived SINEs [67, 119] are the oldest TEs in mammals. This long standing

high conservation in mammalian genomes suggests MIRs to encode some unknown

regulatory function [115]. Indeed succeeding studies have shown individual MIRs to

donate transcription factor binding sites [106, 139], enhancers [92, 125], microRNAs

[105] and cis natural anti sense transcripts [29].

However, our understanding of the reasons for the genome-wide high conservation

of MIRs has remained incomplete. Nevertheless, they have been observed as the only

TEs having a positive relationship with tissue-specific gene expression [61] as shown

in the preceding part of this thesis. This study evaluates the relationship between
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MIRs and the only other elements that have been associated with tissue-specific

expression –enhancers [17, 54]. This genome-wide examination reveals MIRs to be

concentrated in enhancers and to have important tissue-specific regulatory functions

which they exercise through enhancers. These results suggest a plausible rationale

for the exaptation of MIRs and thus their long standing conservation.

1.3 Diversity of cis-regulatory elements

cis-regulatory elements are often noncoding DNA sequences that orchestrate the

proper timing and level of expression of proximal genes. They frequently contain

binding sites for transcription factors[58] which in turn directly interact with gene

promoters to regulate expression. cis-regulatory elements are typically small and

modular in nature i.e. function in a manner autonomous of their location or orienta-

tion relative to their target genes[12]. This small size and modular nature has enabled

the study of cis-regulatory elements using their reporter constructs in transgenic an-

imals. Consequently, several types of cis-regulatory elements have been identified

and described, including transcriptional promoters[46], promoter-tethering elements

[18], enhancers [5], silencers[81], locus control regions(LCRs)[50, 86] and boundary

elements[127] which include enhancer-blocking insulators[69]. Insulators are DNA se-

quence elements that prevent inappropriate interactions between adjacent chromatin

domains that may have distinct functions. Forexample, a transcriptionally active

domain in a specific cell-type might lie close to a transcriptionally inactive domain.

Much of the inappropriate cross-talk between chromatin domains is driven by en-

hancers because transcription factors bound on enhancers can loop over long genomic

distances to reach promoters, giving enhancers the ability to influence the expression

of distal promoters. It is such interactions that are regulated by insulators. As such,

boundaries and enhancers have hitherto not only been considered to be functionally

antagonistic, but also to also occupy distinct and separate loci in the genome. There
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have however been studies suggesting that insulators might exploit the functionality

of other genomic regulatory elements like enhancers [44] and that the distinctions

between various classes of cis-regulatory elements might be exaggerated[44]. In this

thesis, we address this question of the existence of what we designate as composite cis-

regulatory elements from the perspective of boundary elements and enhancers. Using

boundary elements and enhancers predicted computationally from high throughput

genome-wide epigenetic datasets [37, 141], we screen for composite sites that simul-

taneously contain both elements. The thesis also examines the chromatin, gene ex-

pression as well as functional signatures of these elements.

1.4 The DNA methylation paradox

Identical DNA sequences in different cell-types or individuals often present varia-

tions in their expression and resultant phenotypes. This phenomenon is attributable

to various complex layers of molecules that associate with DNA sequences. These

include histone modifications, DNA methylation and transcription factors. Collec-

tively, these molecules and their extensive operational mechanisms are referred to

as epigenetics[9, 80]. Thus efforts to understand genome regulation and phenotypic

determination are centered on the two modes in which gene expression outcomes are

encoded; DNA sequences and epigenetic patterns. DNA methylation, together with

histone modifications and transcription factors, are the most widely studied com-

ponents of epigenetics. For DNA methylation, a methyl group is added to the 5’

position of the cytosine pyrimidine ring, mostly at CpG sites i.e. sites where a cy-

tosine is followed by a guanine, the two being joined by a phosphate group. DNA

methylation is an important and wide spread epigenetic mark whose effects have been

observed in various biological processes including embryogenesis and differentiation

[47], X-inactivation [53], imprinting [85] and repression of viral and repeat sequences

[138]. Indeed, variations in DNA methylation patterns have been implicated in several
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human diseases [59, 110] including cancer [35]. Clear negative associations between

DNA methylation states in promoter regions and gene expression levels have been ob-

served in a number of studies [24, 47, 74]. As a result, methylation is largely depleted

from the promoter regions of genes. In contrast, DNA methylation is abundant in

the gene-bodies of genes and is reportedly positively correlated with gene expression

[2, 4, 56, 83, 88, 108] even though there are indications that it could interfere with

transcription elongation [90]. This apparent contradiction between the activities of

DNA methylation in promoters versus gene bodies has been referred to as the DNA

methylation paradox [63]. While there are cases of individual genes for which gene-

body DNA methylation regulates intragenic promoter activity [94], it is not clear

what the role of gene-body DNA methylation is, and neither is there an understand-

ing of the dynamics of its deposition within the gene bodies. In this thesis, we rely on

several epigenetic datasets first to evaluate the actual relationship between gene-body

DNA methylation and gene expression. Secondly, the thesis assesses the role role of

gene-body DNA methylation. Finally, we collate the different analytical results and

generate a model that illuminates the dynamics involved in the deposition of DNA

methylation within gene bodies.

1.5 Overview of dissertation

This thesis constitutes the intersections of three major aspects of human genome

regulation; transposable elements, epigenetics (as represented by DNA methylation

and histone modifications) and cis-regulatory elements. It applies computational and

statistical analysis on several next generation sequencing datasets to answer specific

biological questions aimed at advancing our understanding of the dynamics of human

genome regulation. Particularly, the thesis examines how the above three aspects

relate to the expression and function of genes (Figure 1.1).

CHAPTER 2 concentrates on the effects of the transposable element environment
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Figure 1.1: Aspects of human genome regulation covered by thesis. Thesis
examines how TEs (Chapters 2 and 3), cis-regulatory elements (Chapters 4) and
Epigenetics (Chapters 5) relate to gene expression and function.

of genes on their architecture and expression. It evaluates the unique effects of the

various TE classes on three parameters of gene expression; level of expression, breadth

of expression, and tissue specificity of expression. It further teases apart the relative

effects of the correlated features of TEs and gene length on gene expression, followed

by an evaluation of how those results inform the two leading hypotheses that relate

gene length to gene expression levels.

CHAPTER 3 focuses on one family of transposable elements, mammalian-wide

interspersed repeats (MIRs) and how they affect tissue-specific gene expression. It

evaluates the genomic distribution of these elements and establishes enhancers as the

primary platform through which MIRs exercise their gene regulatory function, chiefly

through the donation of transcription factor binding sites. The functional relevance of

these enhancer-based MIRs is then illustrated by their profound role in erythropoiesis

and its related processes in the K562 cell-line.

CHAPTER 4 assesses the nature and diversity of cis-regulatory elements. Specif-

ically, it establishes the existence of functional composite (boundary and enhancer)
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cis-regulatory elements in the human genome, thereby confirming the long held pos-

tulation that various classes of cis-regulatory elements often share mechanisms and

their identities may sometimes overlap. The chapter performs a census of these com-

posite elements and finds 174 across the genome. Finally the chapter uses CD4+ T

cells to elicit evidence that these composite cis-regulatory elements facilitate cell-type

specific functions related to inflammation and immune response.

CHAPTER 5 considers the relationship between gene-body DNA methylation and

gene expression and addresses the longstanding DNA methylation paradox. Using a

meta analysis of several epigenetic datasets, it shows that the relationship between

gene-body DNA methylation and gene expression is not linear as previously thought,

but rather non-monotonic and bell shaped. Furthermore, the chapter confirms gene-

body DNA methylation to regulate spurious transcription from intragenic sites. How-

ever it shows that role to be epiphenomenal to an independent process of gene-body

DNA methylation deposition that is driven by the accessibility of DNA to methylation

enzymes during transcription.
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CHAPTER 2

EFFECT OF THE TRANSPOSABLE ELEMENT

ENVIRONMENT OF HUMAN GENES ON GENE

LENGTH AND EXPRESSION

2.1 Abstract

Independent lines of investigation have documented effects of both transposable ele-

ments (TEs) and gene length (GL) on gene expression. However, TE gene fractions

are highly correlated with GL, suggesting that they can not be considered indepen-

dently. We evaluated the TE environment of human genes and GL jointly in an

attempt to tease apart their relative effects. TE gene fractions and GL were com-

pared to the overall level of gene expression and the breadth of expression across

tissues. GL is strongly correlated with overall expression level, but weakly correlated

with the breadth of expression, confirming the selection hypothesis that attributes

the compactness of highly expressed genes to selection for economy of transcription.

However, TE gene fractions overall, and for the L1 family in particular, show stronger

anti-correlations with expression level than GL, indicating that GL may not be the

most important target of selection for transcriptional economy. These results suggest

a specific mechanism, removal of TEs, by which highly expressed genes are selectively

tuned for efficiency. MIR elements are the only family of TEs with gene fractions

that show a positive correlation with tissue-specific expression, suggesting that they

may provide regulatory sequences that help to control human gene expression. Con-

sistent with this notion, MIR fractions are relatively enriched close to transcription

start sites and associated with co-expression in specific sets of related tissues. Our

results confirm the overall relevance of the TE environment to gene expression and

9



point to distinct mechanisms by which different TE families may contribute to gene

regulation.

2.2 Introduction

The relationship between gene architecture and gene expression has been and remains

a subject of continuing interest for genome analysis. In a pioneering study, Castillo-

Davis et al. (2002) observed that, for human and worm genes, intron length was

negatively correlated with the level of expression. In other words, shorter genes were

found to be expressed at higher levels and longer genes at lower levels. To explain this

trend, the authors formulated the “selection hypothesis” [23]. This hypothesis posits

that highly expressed genes are shorter due to selective forces that operate in favor

of minimizing the energy and time expended during transcription. Subsequently, the

relationship between gene length and expression level was confirmed by a number of

studies, providing support for the selection hypothesis [27, 28, 33, 87, 114, 128].

In 2004, Vinogradov also observed that compact genes were more highly expressed,

but he offered a different explanation for this trend [136]. Vinogradov proposed

the “genomic design” hypothesis, which postulates that the shorter length of highly

expressed genes is better explained by the fact that these genes also tend to be

broadly expressed across numerous tissues and thus have simpler regulation, and

require fewer regulatory sequence elements, than genes expressed in a more narrow

tissue-specific fashion. In other words, the relative paucity of regulatory elements in

broadly expressed genes explains their shorter average length. The genomic design

hypothesis rests on the notion that the apparent correlation between gene length and

the level of expression actually reflects a relationship between gene length and the

breadth of expression – i.e. the number of tissues in which a gene is expressed.

The selection hypothesis and the genomic design hypothesis make distinct testable

predictions regarding the relationship between gene length and gene expression. The
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selection hypothesis predicts the strongest correlation between gene length and the

overall expression level, whereas the genomic design hypothesis predicts the strongest

correlation between gene length and the breadth of expression. A recent study used

these predictions to evaluate the competing hypotheses and found that the selection

hypothesis serves as the best explanation for the relationship between gene length

and expression [19].

While the aforementioned studies were ongoing, there was an independent line of

research investigating the relationship between gene architecture and gene expression

from a different perspective. In eukaryotic genomes, and particularly for mammalian

genomes, gene architecture is substantially influenced by the presence of transposable

element (TE) derived sequences. TE derived sequences are extremely abundant in

mammalian genomes; at least 45% of the human genome is made up of TE sequences

[82, 132]. In addition, TE sequences are non-randomly distributed across genomes. In

the human genome, Alu (SINE) elements are enriched in GC- and gene-rich regions,

whereas L1 (LINE) elements are enriched in low GC and gene-poor regions [82, 118].

Finally, individual genes can vary tremendously with respect to the amount and

identity of TE sequences that they harbor.

Over the last several years, a series of studies have called attention to a relation-

ship between the transposable element (TE) environment in-and-around genes and

the level and breadth of gene expression. In 2003, the human genome sequence was

used together with expression data to construct a human transcriptome map [133].

This map identified co-located clusters of highly expressed genes with specific genomic

characteristics. These clusters were gene dense, had high GC-content, were enriched

for SINEs, Alu elements in particular, and had low LINE densities. The same study

found clusters of weakly expressed genes with low SINE and high LINE densities.

Shortly thereafter, Han et al. confirmed that the most highly expressed human genes

were depleted for L1 elements and demonstrated a mechanism that could partially
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explain this pattern [51]. They showed that L1 elements can disrupt transcriptional

elongation based on the presence of strong polyA signals in their sequences. Kim et

al. made an important contribution to this body of work by distinguishing between

TE effects on the level of expression and the breadth of expression [72]. They mea-

sured overall expression level as the peak level of expression over all tissues (PE) and

expression breadth (BE) as the number of tissues in which a gene is expressed over

some basal threshold. Their work revealed that Alu element gene densities are more

highly correlated with BE, whereas L1 densities are most negatively correlated with

PE. These results suggested that different families of TEs may have specific effects on

different aspects of gene expression. Consistent with these results, Eller et al. showed

that highly and broadly expressed housekeeping genes can be distinguished by their

TE-content, being primarily enriched for Alus and depleted for L1s [34]. In addition

to the level and breadth of expression, the TE environment of mammalian genes has

also been related to expression in cancer tissues [84] and the evolutionary divergence

of gene expression [104].

As of yet, no one has attempted to consider these two areas of investigation to-

gether: 1) the relationship between gene length and expression and 2) the relationship

between TE environment and gene expression. In this study, we attempt to disentan-

gle the effects of gene length and TE environment on gene expression and to evaluate

the relative influences of each on expression. Having considered their effects sepa-

rately, we then more thoroughly evaluate the connections between gene architecture

and the selection versus genomic design hypotheses.

2.3 Methods

2.3.1 Defining gene loci

To accommodate alternative splice variants of human genes and compute TE frac-

tions for specific loci, we define genes here as distinct transcriptional units (TUs) -
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genomic regions encompassing all overlapping transcripts from the start of the 5’-

most exon to the end of the 3’-most exon (Supplementary Figure A.1A). To that end,

we downloaded RefSeq annotations for the March 2006 build of the human genome

reference sequence (NCBI build 36.1; UCSC hg18) from the UCSC Genome Browser

[68, 109]. A total of 32,128 RefSeq transcripts were merged into 19,123 TUs that

represent distinct gene loci.

2.3.2 Determining genic and intergenic TE fractions

To determine the fractions of human genes (TUs) that are made up of TE sequences,

human TEs were broken down into six of the major human TE classes or families

according to the Repbase classification system [67, 76] – Alu, MIR, L1, L2, DNA and

LTR. RepeatMasker (http://www.repeatmasker.org) annotations of the genomic co-

ordinates of these TEs were used to map them onto their co-located genes. For each

TE type, its fraction in a gene was computed as the number of base pairs occupied by

a TE as a fraction of all base pairs in the gene. For each human gene, its intergenic

region was taken as the union of the regions upstream of the transcription start site

and downstream of the termination site to the genomic mid-point between the adja-

cent upstream and downstream genes. TE intergentic fractions were then calculated

in the same way as for TE genic fractions based on these genomic coordinates.

2.3.3 Gene expression data

To measure gene expression in different tissues, we used the Gene Expression Atlas

from the Genomics Institute of the Novartis Research Foundation, which consists

of Affymetrix microarray gene expression values for 44,776 probe sets across 79 hu-

man tissues [123]. Affymetrix probe sets were mapped onto their corresponding TUs

based on their genomic location coordinates. As suggested previously [121], probes

that mapped to more than one TU were discarded, and for TUs with more than one

mapped probe, the average expression level per tissue was used. This resulted into
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a final dataset of 15,658 TUs to which expression data could be assigned. Expres-

sion data are represented as signal intensity units based on the Affymetrix MAS4

processing and normalization algorithm suite.

2.3.4 Measurement of gene length (GL) and gene expression parameters

For each TU, the GL was calculated by simply subtracting its start coordinate along

the chromosome from the end coordinate and then subjecting the difference to a log2

transformation. The microarray expression data described above were used to cal-

culate three measurements of gene expression: peak expression level (PE), breadth

of expression (BE) and tissue-specific expression (TS). To obtain PE, the signal in-

tensity value from the tissue where the TU is most highly expressed was selected for

each TU and subjected to a log2 transformation to accommodate the vast disparity

(range=197,652.4 signal intensity units) in the peak levels of expression between TUs.

For each TU, the BE was calculated as the number of tissues in which the expression

of the TU exceeded a threshold of 350 expression signal intensity units [64]. For each

TU, a TS index was computed as described [148]. The value of TS varies between 0

and 1 and reflects the number of tissues where the TU is overly expressed relative to

its expression in other tissues. The TS index is calculated as:

TS =

∑N
i=1(1− xi)
(N − 1)

(1)

where N is the number of tissues and xi represents a TU’s signal intensity value in

each tissue i divided by the maximum signal intensity value of the TU across all

tissues.

2.3.5 Comparative analysis of GL, TE gene fractions and gene expression
parameters

The relative effects of GL and the TE gene environment on gene expression were

evaluated using pairwise and multiple linear regression analyses where GL and the

TE-fractions were the independent variables and the gene expression parameters PE,
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BE and TS were the dependent variables. For these analyses, parameter values were

ranked and binned in order to smooth the signal and reduce background noise. For

each parameter, the 15,658 TUs were ranked and divided into 100 bins of approxi-

mately equal size (∼157 TUs per bin). Parameter values were averaged for each bin

and the averages were used to populate ordered vectors of values (n=100). Vectors

that represent independent and dependent variables were then compared using pair-

wise regression or combined into a multiple regression model. All data were treated

using the same ranking and binning procedure so that the relative effects of the in-

dependent variables on the dependent variables could be comparatively evaluated.

2.3.6 Gene expression clustering analysis

Tissue-specific expression patterns for the top 10% MIR-rich genes were analyzed

using hierarchical clustering based on pairwise Euclidean distances between vectors

of tissue-specific gene expression levels over 79 tissues. This analysis was conducted

using the program Genesis [122] with signal intensity values median normalized across

tissues.

2.3.7 Statistical analyses used

For the pairwise regression analyses, independent and dependent variable vectors were

compared using pairwise Pearson correlation (r -values in figs. 2.1 to 2.5; individual

coefficient of determination R2-values in Tables tables 1 to 5) and the significance of

the correlations (P -values in figs. 2.1 to 2.5 and Tables tables 1 to 5) were determined

using the Student’s t-distribution. Partial correlation analyses were used to control

for the effects of correlated pairs of independent variables (Tables tables 1, 2 and 4).

Multiple regression analyses were conducted to determine the combined coefficient of

determination for all TE fractions (R2-values in Table 3) and the partial correlation

values (r -values in Table 3). Significance values for the multiple coefficients of de-

termination (‘All TE’ P-values in Table 3) were determined using the F distribution.
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Significance values for the partial correlations (P -values in Tables tables 1 to 4) were

determined using the Student’s t-distribution.

2.4 Results and discussion

2.4.1 TE environment of human genes

Gene and TE annotations from the reference sequence of the human genome (NCBI

build 36.1, UCSC hg18) were analyzed together to characterize the TE environment

of human genes. A total of 19,123 transcriptional units (TUs), which reconcile al-

ternative splice variants and represent discrete gene loci, were derived from RefSeq

annotations as described in the Materials and Methods (see also Supplementary Fig-

ure A.1A). The fraction of each human gene locus derived from TE sequences was

determined using RepeatMasker annotations. Six of the most abundant classes (fam-

ilies) of TEs were considered in this analysis - Alu, MIR, L1, L2, DNA and LTR. The

frequencies of other classes of TEs were found to be too low to substantially affect

the overall TE environment of human genes.

Human genes show an average TE fraction of 34% and a standard deviation (SD)

of 18% (Figure 2.1A). Human TE gene fractions show a broad distribution that is

fairly bell shaped with the exception of a sharp peak of genes that are devoid of TEs

(0% TE fraction in Figure 2.1A). The presence of these TE-free genes is consistent

with the removal of genic TEs by purifying selection [116]. The TE gene fractions

observed for individual TE families are consistent with previous results [97] in which

Alu elements were found to be the most abundant family of TEs in human genes,

whereas LTR elements are found in the lowest frequency within human genes (Sup-

plementary Figure A.1B). The length distributions of TEs in genes (Supplementary

Table ST1) reveal that they are mostly short (<400bp) as would be expected in tran-

scribed regions where long TEs are less tolerated owing to their higher propensity to

be deleterious.

16



Figure 2.1: TE fractions in and around human genes. (A) Distributions of
intergenic (green) and genic (red) TE fractions. (B) Relationship between intergenic
TE fractions and the corresponding genic TE fractions. (C) Relationship between
intergenic TE fractions and gene length (green) and relationship between genic TE
fractions and gene length (red). Pearson correlation coefficient values (r) along with
their significance values (P) are shown for all pairwise regressions.

Overall, intergenic regions show higher TE-fractions (average=46% Figure 2.1A)

and also have a more normal distribution with lower variation than seen for genic

regions (SD=14% Figure 2.1A). For individual human genes, genic and intergenic

TE fractions are highly positively correlated (r=0.95, p=6.3x10-53), consistent with
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Table 1: Relationship between the local TE environment and gene length.a

TE fractions within genes (genic) and between genes (intergenic) are correlated with
GL (gene length).b Partial correlation between genic TE fractions and gene length
controlling for intergenic TE fractions.c Partial correlation between intergenic TE
fractions and gene length controlling for genic TE fractions.

TE fractions r P-value

GL

Genic TEa 0.87 1.04E-32
Intergenic TEa 0.55 1.40E -09
Genic TE — Intergenic TEb 0.82 6.80E-45
Intergenic TE — Genic TEc -0.18 7.02E-02

the notion that the local genomic environment strongly influences TE gene fractions

[82, 118].

2.4.2 TE fractions are related to gene length

As noted in the introduction, the relationship between gene length (GL) and expres-

sion has been investigated separately from the relationship between the TE environ-

ment of genes and their expression. However, GL and gene TE fractions may be

related if genes increase in length due, at least in part, to an accumulation of TE

derived sequences. If genes increase in length due to the acquisition of TEs, then

we expect to see a positive correlation between gene TE fractions and GL. On the

other hand, if GL increases via mechanisms that do not involve TEs, there should

be no correlation between gene TE fractions and GL. To distinguish between these

two possibilities, we compared the TE fractions of human genes to their length (as

described in Materials and Methods).

When all human TEs are considered together, there is a strong and significantly

positive correlation between gene TE fractions and GL (r=0.87, P=1.0x10-32 Fig-

ure 2.1C). While only 0.55% of the average GL for the bin with the 1% shortest genes

is constituted by TEs, the percentage progressively increases to 39.73% for the bin

with the top 1% longest genes, a >72 fold increase in the average fractions of genes

occupied by TEs. However, the positive relationship between gene TE fractions and
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GL is not strictly monotonic. Specifically, in 77% of all genes, the percentage of

GL constituted by TEs progressively increases from 0.55% in genes of about 850bp

to 44.79% for genes spanning about 70.9kb (>81 fold increase in gene TE fraction)

(Figure 2.1C). For the remaining genes beyond this length (23% of all genes), the

percentage of GL constituted by TEs levels off and remains more or less constant

with increasing length.

As noted in the previous section, TE genic and intergenic fractions are highly cor-

related (Figure 2.1B). These data are consistent with previous studies showing that

TE fractions and family distributions differ among genomic compartments and thus

may depend on regional factors such as GC-content and recombination rate [97, 133].

Therefore, it is possible that the relationship between genic TE fractions and gene

length simply reflects such regional genomic features. To test for this possibility, we

compared intergenic TE fractions to gene length. Intergenic TE fractions are sig-

nificantly positively correlated with gene length (r=0.55, P=1.4x10-9); however, the

correlation is substantially weaker than seen for genic TE fractions and the slope of

the relationship is far more flat (Figure 2.1C). Furthermore, partial correlation analy-

sis shows that TE genic fractions remain positively correlated with gene length when

intergenic TE fractions are controlled for, whereas the positive correlation between

intergenic TE fractions and gene length disappears when genic TE fractions are con-

trolled for (Table 1). In other words, the relationship between TE gene fractions and

gene length does appear to have some gene-specific, as opposed to genomic regional,

component.

To evaluate the correlation between TE genic fractions and gene length more

closely, we focused on individual TE families and found that Alus dominate the level-

ling off in gene TE fractions seen for the longest genes. Alus are the most abundant TE

sequence within gene boundaries (Supplementary Figure A.1B), and Alus also show a

unique TE fraction distribution with gene length. The fraction of Alus within genes
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rises sharply and peaks for mid-size genes (∼23.3kb) followed by an almost equally

precipitous decline in frequency, yielding a bell-shaped distribution (Figure 2.2A and

Supplementary Figure A.2A). However, the distribution of TE gene fractions for all

other TE families analyzed tends to be generally linear in relation to GL (Figure 2.2B,

Supplementary Figure A.2B-F), increasing from an average percentage of 0.34% in

the shortest genes, to 32.83% in the longest genes (a >96 fold increase in the fractions

of genes occupied by TEs).
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Figure 2.2: Relationships between the Alu fractions of human genes, gene
length (GL) and GC-content. (A) Relationships between Alu gene fractions and
GL. (B) Relationship between TE gene fractions for all TEs except Alu and GL.
(C) Relationship between GC-content and GL. (D) Relationships between Alu gene
fraction and GC-content. Pearson correlation coefficient values (r) along with their
significance values (P) are shown for all pairwise regressions.
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Table 2: Effect of GC-content on the relationship between Alu genic frations
and gene length.a Alu genic fractions and genic GC-content values are correlated
with GL (gene length).b Partial correlation analyses control for effect of GC-content
on Alu fractions (Alu |GC) and Alu fractions on GC-content (GC |Alu) respectively.

Featurea r P-value Controlb r P-value

GL
Alu 0.45 1.32E-06 Alu — GC 0.58 1.69E-12
GC -0.92 5.93E-42 GC — Alu -0.94 2.99E-152

It is not immediately apparent while Alu fractions, unique among all classes of

TEs considered here, decline for the longest genes. One possibility is that Alus are

known to be prevalent in GC-rich regions, while larger genes (introns) tend to have

lower GC-content (Figure 2.2C). Thus, it may be that the decline in Alu content for

longer genes is based on regional genomic biases in GC-content. If this is the case,

then genes with low GC-content should also have low Alu fractions and vice versa. We

found that genes with low GC-content do in fact have lower Alu content as expected

(Figure 2.2D). However, the relationship between genic Alu fractions and GC-content

is not monotonic; Alu fractions peak for genes in the middle of the GC-content range

and decrease for both low and high GC-content genes. We performed partial correla-

tion in an attempt to further tease apart the relationship between Alu gene fractions

and GC-content as they relate to gene length. GC-content is much more strongly

correlated with gene length than Alu fractions are (Figure 2.2A and 2.2C). If the

relationship of Alu genic fractions with gene length mainly reflects regional changes

in GC-content, then the correlation of Alu fractions with gene length should decrease

when GC-content is controlled for. However, when GC-content is controlled for with

partial correlation, the positive correlation between Alu gene fractions and gene length

actually increases (Table 2). Similarly, when Alu gene fractions are controlled for the

correlation between GC-content and gene length becomes more negative. These data

suggest that both Alu gene fractions and GC-content are independently related, to

some extent, with gene length in the human genome.

Overall, the positive correlations between TE gene fractions and GL indicate that
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longer genes have disproportionately more TEs relative to other sequence elements.

Considering all TE families together, TEs make up only 0.55% of the shortest genes

and yet account for 40% of the increase in GL when assessed in the longest genes.

For 3
4

of all genes, the contribution of TEs to increases in GL is >45%. These results

underscore the contributions of TEs to the length differences among human genes,

and suggest that the influences of TE environment and GL on gene expression can

not be adequately considered separately.

2.4.3 TE gene environment and the selection hypothesis

In order to relate the TE environment of human genes and GL to gene expression,

three expression parameters for human genes were measured using microarray data

over 79 tissues as described in the Materials and Methods: 1) peak expression (PE),

2) breadth of expression (BE) and 3) tissue-specific expression (TS). PE is the maxi-

mum expression level observed for a gene over all 79 tissues and is taken to represent

the overall gene expression level; BE is the number of tissues in which a gene can be

considered to be expressed, and TS is a measure of tissue-specificity described previ-

ously [148]. PE and BE were measured here because they can be used to distinguish

between the selection versus genomic design hypotheses. The selection hypothesis

predicts a stronger positive correlation of PE with GL, whereas the genomic design

hypothesis predicts a stronger correlation of BE with GL. However, BE has been

criticized as an overly simplistic measure that may not distinguish genes that are

expressed in the same sets of tissues albeit at very different relative levels. For this

reason, we also use a measure of TS that explicitly reflects the number of tissues where

a gene is overly expressed relative to its expression in other tissues (see Materials and

Methods). Genes overly expressed in a few tissues (i.e. tissue-specific genes) have

high TS indices while more broadly and evenly expressed genes have low values of

TS.
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Table 3: The relationship between TE fractions, gene length and gene ex-
pression.a R2 (The coefficient of determination) is the fraction of variability in each
expression parameter that can be attributed to the variability in each sequence fea-
ture (individual TE families, GL or all TEs combined). b r is the partial correlation
of each feature with the expression parameters, taking into account the presence of
the other elements. For each expression parameter, the TEs and GL are ranked by
their predictive value for the parameter.

Expression 

parameter 

TE Coefficient of determination  Partial correlation  

  (R
2
)

a
 P-value (r)

b
 P-value 

 All TEs 0.78 < 2.2E-16  -0.13 2.1E-01 

 L1 0.75 < 2.2E-16  -0.86 2.6E-63 

 LTR 0.60 < 2.2E-16  -0.20 4.5E-02 

PE GL 0.48 1.1E-15 -0.13 2.2E-01 

 DNA 0.29 4.2E-09 -0.01 9.4E-01 

 L2 0.27 2.0E-08 -0.25 1.4E-02 

 MIR 0.06 6.3E-03 0.25 1.1E-02 

 Alu 0.03 5.0E-02 0.32 1.1E-03 

      

 All TEs 0.76 < 2.2E-16  -0.10 3.1E-01 

 Alu 0.59 < 2.2E-16 0.52 3.0E-09 

 LTR 0.57 < 2.2E-16 -0.37 1.0E-04 

BE L1 0.47 2.8E-15 -0.52 2.4E-09 

 MIR 0.12 2.2E-04 -0.28 3.6E-03 

 GL 0.04 3.2E-02 0.15 1.5E-01 

 L2 0.02 7.4E-02 0.08 4.4E-01 

 DNA 0.01 1.3E-01 0.14 1.7E-01 

      

 All TEs 0.66 < 2.2E-16 -0.32 8.8E-04 

 L1 0.63 < 2.2E-16  -0.67 9.5E-19 

 GL 0.53 < 2.2E-16 -0.05 6.3E-01 

TS L2 0.30 3.0E-09 -0.21 3.3E-02 

 Alu 0.29 5.0E-09 -0.13 2.2E-01 

 LTR 0.28 9.4E-09 -0.24 1.8E-02 

 MIR 0.27 2.1E-08 0.31 1.6E-03 

 DNA 0.24 1.8E-07 -0.04 7.3E-01 

 

Regression analysis was used to individually compare values of these expression

parameters to TE gene fractions for all six families and GL ( figs. 2.3 to 2.5), and

the effect of TE gene fractions and GL were also considered jointly using multiple
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regression (Table 3). Consistent with previous results [19, 33], GL can be seen to

have a much stronger association with PE than BE. While 48% of the variability

in PE is attributable to GL, only about 4% of the variability in BE is attributable

to GL (Table 3). Furthermore, it can be seen that the non-monotonic shape of the

relationship between GL and PE (Figure 2.3H) is similar to what has been reported

previously [19] and also closely resembles the shape of the Alu gene fraction versus

PE distribution (Figure 2.3A). The strongest individual TE family correlation with

PE is the negative correlation seen for L1 fraction versus PE (Figure 2.3C). L1 also

has the largest negative partial correlation value with PE in the multiple regression

analysis as well as the largest coefficient of determination (Table 3). When all TEs

are analyzed together, 78% of the variability in PE can be attributed to variability

in TE gene fractions, while only 48% is attributable to variability in GL (Table 3).

While these data do lend support to the selection hypothesis, they also indicate

that TE derived sequences within genes are more highly correlated with their expres-

sion level than the overall gene length. Thus, the selective mechanism for streamlining

highly expressed genes may be related more to the elimination, or shortening, of TE

sequences per se rather than the overall shortening of genes.

2.4.4 TE gene environment and the genomic design hypothesis

The relationship between GL and BE seen here is generally weak; GL has one of

the lower individual correlations with BE (Figure 2.3G), and variability in GL only

contributes 9% of the variability seen in BE (Table 1). In addition, the results show

that while all the longest genes are narrowly expressed, there are about as many

compact narrowly expressed genes as there are compact broadly expressed genes

(Figure 2.4H). Even more surprising is the fact that the partial correlation value

for GL versus BE is positive, albeit marginally (Table 3), and not negative as can

be expected if more narrowly expressed genes are in fact longer.
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Figure 2.3: TE fractions, GL and the peak level of expression
(PE).Relationships between the TE gene fractions for (A)-Alu, (B)-MIR, (C)-L1,
(D)-L2, (E)-DNA, (F)-LTR and (G)-All TEs and the PE of human genes. (H) Re-
lationship between GL and PE. Pearson correlation coefficient values (r) along with
their significance values (p) are shown for all pairwise regressions.

To interrogate the genomic design hypothesis more closely, we used TS as an alter-

nate measure for the tissue-specificity of expression. The genomic design hypothesis

posits that increasing gene length is based on the requirement for additional regula-

tory sequences in genes that are expressed more narrowly. Thus in the case of TS,

a positive correlation is expected between GL and TS; in other words, longer genes

are expected to be more tissue-specific. For the pairwise regression analysis, there

is actually a strongly negative correlation between GL and TS (Figure 2.5H). This

negative trend holds when the TE fractions are controlled for in the partial correla-

tion, and GL also has a high coefficient of determination for TS (Table 3). It should
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be noted that the negative correlation between GL and TS may be related to the

analytical formulation used to compute TS (see Materials and Methods), since genes

with high expression levels in one or a few tissues (i.e. high PE) will often, but not

always, have high TS as well. Nevertheless, when taken together, the data for both

GL versus BE and GL versus TS seem to argue against the genomic design hypothesis

as originally conceived.
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Figure 2.4: TE fractions, GL and the breadth of expression (BE). Relation-
ships between the TE gene fractions for (A)-Alu, (B)-MIR, (C)-L1, (D)-L2, (E)-DNA,
(F)-LTR and (G)-All TEs and the BE of human genes. (H) Relationship between GL
and BE. Pearson correlation coefficient values (r) along with their significance values
(p) are shown for all pairwise regressions.

With respect to the TEs, there are strongly positive (Alu – Figure 2.4A) and

negative (L1 – Figure 2.4C) correlations between TE gene fractions and BE, and
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76% of the variability in BE can be attributed to variability in all TE gene fractions

(Table 3). Overall, TE gene fractions also have the highest coefficient of determination

for TS. Consistent with what was previously shown for PE, these data suggest that

the combinatorial impact of TEs in human genes is more important than the overall

gene length with respect to the number of tissues in which a gene is expressed and

the tissue-specificity of genes.

2.4.5 L1 elements and gene expression levels

As described previously, the data analyzed here provide support for the selection

hypothesis, since GL is more strongly (negatively) correlated with PE than BE. How-

ever, the strongest negative correlation with PE in the pairwise regression analysis

is seen for L1 gene fractions (Figure 2.3C). L1 also has the highest negative partial

correlation with PE in the multiple regression analysis and the highest coefficient

of determination (Table 3); 75% of the variability in PE is attributable to L1 gene

fractions compared to the 48% explained by GL. Thus, L1 gene fractions are more

predictive of PE than GL, indicating that variation in the gene fractions of L1s is

associated with a higher change in gene expression than variation in GL.

It is also possible that regional genomic features, such as GC-content, contribute

to the apparent effect of L1 gene content on PE. It is known that L1 elements are

enriched in GC-poor regions [82, 118], whereas GC-content is strongly positively

correlated with PE and BE [136]. Thus, one may expect to see the kind of negative

correlations between L1 and PE/BE seen here based solely on regional biases in GC-

content. We performed partial correlation to separate the effects of L1 gene fractions

and GC-content on both PE and BE. When we control for GC-content, the partial

correlation of L1 fractions with PE remains highly significant (Table 4). Conversely,

when we control for L1 fractions, the partial correlation of GC with PE is rendered

insignificant (Table 4). Both L1 fractions and GC-content show similar levels of
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Figure 2.5: TE fractions, GL and tissue-specific expression (TS). Relation-
ships between the TE gene fractions for (A)-Alu, (B)-MIR, (C)-L1, (D)-L2, (E)-DNA,
(F)-LTR and (G)-All TEs and the TS of human genes. (H) Relationship between GL
and TS. Pearson correlation coefficient values (r) along with their significance values
(p) are shown for all pairwise regressions.

relatedness with BE and partial correlation analysis does not remove either effect

(Table 4). Thus, the relationship between L1 gene fractions and PE/BE can not

be explained solely by the genomic distribution of L1s among different GC-content

regions.

L1 elements are an abundant and recently active family of LINEs that make up

17% of the human genome sequence [82, 132]. Experimental studies have demon-

strated that the presence of L1 sequences within genes can lower transcriptional

activity [51, 129]. The effect of the presence of L1s on PE observed here may be
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Table 4: Effect of GC-content on the relationship between L1 genic frac-
tions and gene expression. a L1 genic fractions and genic GC-content values are
correlated with the expression parameters PE (peak expression ), BE (breadth of ex-
pression) and TS (tissue-specificity). b Partial correlation analyses control for effect
of GC-content on L1 fractions (L1 |GC) and L1 fractions on GC-content (GC |L1)
respectively.

 Feature
a
 r P-value Control

b
 r P-value 

PE 
L1 -0.87 1.69E-31 L1 | GC -0.73 1.3E-25 

GC 0.69 1.20E-15 GC | L1 0.12 2.2E-01 

BE 
L1 -0.69 1.38E-15 L1 | GC -0.44 1.7E-06 

GC -0.21 2.00E-02 GC | L1 0.44 1.4E-06 

TS 
L1 -0.79 3.12E-23 L1 | GC -0.77 3.0E-32 

GC 0.32 6.81E-04 GC | L1 -0.03 7.5E-01 
 

attributed to the fact that the disruptive activity of L1s on transcription inhibits

gene expression more than an overall increase in gene length does. However, this

finding is not entirely inconsistent with the selection hypothesis, rather it suggests

a specific mechanism, namely the elimination of L1 sequences, for selectively tuning

highly expressed genes that would also result in an overall decrease in their length.

2.4.6 MIR elements and tissue-specific gene expression

The genomic design hypothesis posits a requirement for additional regulatory se-

quence elements that facilitate tissue-specific expression, which in turn leads to an

increase in GL. However, data reported here show that the presence of such regula-

tory elements does not necessarily result in an overall increase in GL as predicted the

genome design hypothesis (Figure 2.5H). In light of this realization, we sought to eval-

uate whether any specific TE sequence elements might be related to the regulatory

complexity entailed by tissue-specific genes. Out of all the TE families evaluated,

MIRs are the only elements that show the expected trends for the genome design

hypothesis for both BE and TS. The fraction of MIRs in human genes is negatively

correlated with BE (Figure 2.4B) and positively correlated with TS (Figure 2.5B)

as expected. In fact, MIRs are the only TEs positively correlated with TS, and the

increase in the MIR gene fraction is not linear with increasing TS. At the high range
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of TS (>0.7; 58% of all genes), the positive correlation of MIR gene fractions to TS

is even stronger (r=0.78, P=3.7x10-18).

These results are interesting in light of what is already known about MIRs. MIR

elements (mammalian wide interspersed repeats) are an ancient family of tRNA de-

rived SINEs [67, 119], and they have previously been implicated as having regulatory

significance in a number of studies. Initially, human MIR sequences were shown to be

highly conserved over time suggesting that they may encode some unknown regula-

tory function [115]. Subsequently, MIR derived sequences have been shown to donate

transcription factor binding sites [106, 139], enhancer sequences [92], microRNAs [105]

and cis natural anti sense transcripts [29] to the human genome. In addition, it has

been shown that, while TEs are generally depleted from introns, MIRs are actually

significantly enriched within genes that might require subtle regulation of transcript

levels or precise activation timing, such as growth factors, cytokines, hormones, and

genes involved in the immune response [117]. Such genes would be expected to be

largely tissue-specific.

If MIRs donate regulatory sequences to tissue-specific genes, then one may expect

to observe relative increases in MIR density in the regulatory regions upstream and

downstream of transcription start sites (TSS). To evaluate this possibility, we took

the top 10% tissue-specific genes and evaluated their MIR frequencies at 1kb intervals

along a 20kb window surrounding the gene TSS. As with all other TEs, MIRs show a

marked decline in frequency most proximal to the TSS. However, MIRs show a unique

pattern of enrichment both upstream and downstream of the TSS, just outside the

proximal promoter region, compared to other families of TEs. In fact, MIRs are

the only elements that show local frequency maxima at -1kb and +2kb with respect

to the TSS. All other TEs show their maxima in more distal regions from the TSS

(Figure 2.6). This pattern is consistent with a unique regulatory role for MIRs,

perhaps owing to the donation of cis-regulatory elements, as compared to other TEs.
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Figure 2.6: The local frequency maxima of TE densities around the TSS
of tissue-specific genes. The red line shows the density distribution of MIRs
around transcription start sites. Colored dots show the locations of the local frequency
maxima for the different TE classes/families.

If the regulatory effect of genic MIRs is based on the donation of shared transcrip-

tion factor binding sites, then one may expect the tissues in which MIR-rich genes

are expressed to be similar. We evaluated this prediction in two ways. First, we took

the top 10% MIR rich genes and for each gene we determined the tissue in which

it was maximally expressed. The observed frequency distribution for these tissues

was compared to a randomized distribution of the same number of genes among all

tissues in the microarray data set analyzed here using a X 2 test. The observed distri-

bution is far from random (Supplementary Figure A.3; (X 2=1,406.8 P=1.1x10-242),

and there are a number of specific tissues, and groups of related tissues, that are over-

represented, particularly liver, blood related tissues, reproductive tissues and nervous

tissues. Second, we clustered the expression patterns of the top 10% MIR rich genes

using hierarchical clustering based on the Euclidean distances between their gene ex-

pression patterns over 79 tissues. Several of the resulting clusters show groups of

MIR rich genes that are markedly over-expressed among these same related groups

of tissues (Figure 2.7).
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Figure 2.7: Heatmap showing co-expression of MIR-rich genes. MIR-rich
genes hierarchically clustered into groups of similar expression profiles across tissues.
The clusters show maximum expression in related sets of tissues.

MIRs are a relatively ancient family of TEs that are conserved among mammals

including mouse. We evaluated TE gene fraction and expression data for mouse,

in the same as was done for humans, to see if the same trends in the relationship

between MIR gene fractions and tissue-specificity hold for mouse elements. As is the

case for the human genome, mouse MIR elements are the only family of TEs with

genic fractions that are significantly positively correlated with TS (Table 5). This

suggests the possibility that MIR elements have been conserved among mammalian

genomes, at least to some extent, by virtue of their regulatory contributions.

The genomic design hypothesis predicts that additional regulatory sequence ele-

ments required by tissue-specific genes will lead to an increase in their overall length.

However, with respect to MIRs, our analysis suggests that the enrichment of regula-

tory elements in tissue-specific genes does not lead to an increase in the overall length

of genes. Rather, the regulatory complexity required by tissue-specific genes may be

achieved in some cases via the donation of a few key sequence elements provided by

TEs that come pre-equipped with existing regulatory capacity.

2.5 Conclusions

The architecture of human genes has important implications for how they are ex-

pressed. Previous studies on this topic have focused separately on the influences of
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Table 5: Relationship between genic TE fractions and tissue-specificity
in mouse.a Genic TE fractions for mouse TE families were correlated with tissue-
specificity in the same way as done for human TE families (see Figure 2.5).

TE family r P-value
MIR 0.37 7.5E-05
LTR 0.12 1.2E-01
L1 0.08 2.2E-01
DNA 0.07 2.6E-01
L2 -0.25 5.6E-03
ID -0.40 2.1E-05
B4 -0.46 5.9E-07
B1 -0.74 1.6E-18
B2 -0.74 4.9E-19

GL or the TE environment on gene expression. Here, we show that these two factors

are closely related, and we consider them jointly in an attempt to dissect their indi-

vidual contributions. Consistent with previous results, we observed GL to be strongly

correlated with PE and less so with BE. We also show that GL is strongly correlated

with TS but not in the direction that is expected according to the genomic design

hypothesis. These data provide strong support for the selection hypothesis. However,

we show that the TE fraction of human genes has a stronger overall effect on gene

expression than does GL. Considered together, TE gene fractions explain 78%, 76%

and 66% of the variability observed for PE, BE and TS, in all cases, greater than

what is seen for GL. We also uncover examples where individual TE families, L1s and

MIRs respectively, have marked effects on the level and breadth of gene expression.

Consideration of intergenic TE fractions and GC-content together with TE gene

fractions suggests that the relationships between TE gene fractions and gene length

and expression are not solely related to regional genomic processes. However, there

may be other as yet undetected regional genomic factors that could mitigate the

apparent relationships between TE gene fractions and gene length and expression.

Nevertheless, the results reported here underscore the potential regulatory implica-

tions of the TE environment of human genes and also suggest specific mechanisms
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for how TEs may contribute to gene regulation.
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CHAPTER 3

MIRS REGULATE HUMAN GENE EXPRESSION AND

FUNCTION PREDOMINANTLY VIA ENHANCERS

3.1 Abstract

MIRs are the oldest Transposable Elements (TEs) in the human genome and are

mammalian -wide. Their long standing conservation and universal occurrence within

the mammalian lineage suggests an essential functional role. Infact, they are the

only TEs that are positively correlated to tissue-specific gene expression genome-

wide. However, this genome-wide tissue-specific association has also been observed

for enhancers. This coincident similar correlation between both MIRs and enhancers

to tissue-specificity suggests that MIRs might be strongly linked to enhancers. To

test this, we examined the relationship between MIRs and enhancers in terms of both

genomic location and function. This analysis revealed MIRs to be highly concentrated

in enhancers and to constitute a significant part of the core of enhancers. Likewise,

we found significantly more enhancers to be linked to MIRs than would be expected

by chance. Many novel MIR-derived enhancers are reported and so are numerous

MIRs that are linked to enhancers, complete with a similar chromatin epigenetic

pattern as that of canonical enhancers. Moreover, MIRs are found to be substantial

donors of functional transcription factor binding sites to enhancers, a likely reason

for their evolutionary co-option into enhancer bodies. Furthermore, MIRs located

in enhancers show significant relationships with gene expression levels, tissue-specific

gene expression and tissue-specific cellular functions. Taken together, these data

reveal enhancers to be the primary cis-regulatory platform from which MIRs exercise

their regulatory function in the human genome.
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3.2 Introduction

Transposable elements (TEs) are very abundant in eukaryotic genomes, particularly

mammalian genomes. Indeed, at least 45% of the human genome is made up of

TE sequences [82, 132] which are non-randomly distributed across genomes. In the

human genome forexample, Alu (SINE) elements are predominantly found in GC-

and gene-rich regions, while L1 (LINE) elements are most prevalent in low GC and

gene-poor regions [82, 120]. This ubiquitous but non-random distribution has resulted

in the exaptation [49] of TE sequences for several functions such as the rewiring of

novel regulatory networks [39, 113] and the subsequent evolutionary divergence in

eukaryotic genome regulation [16, 51].

Different families of TEs have been shown to have specific effects on different

aspects of gene expression. Forexample, weakly expressed genes generally contain

low SINE and high LINE densities while the most highly expressed human genes are

enriched for SINEs (Alu) [133] and depleted for L1 elements [51]. Indeed, a mechanism

that partially accounts for L1 repression of gene expression has been demonstrated,

in which L1 polyA signals disrupt transcriptional elongation [51]. Additionally, Alu

elements are significantly associated with the breadth of gene expression across tissues

while L1s are negatively correlated with the levels of expression [61, 72]. Thus highly

and broadly expressed housekeeping genes are identifiable by their TE-content which

is rich in Alus and poor in L1s [34].

However, Mammalian-wide Interspersed Repeats (MIRs) are the only TEs that

show a positive association with tissue-specific gene expression[61]. MIR elements,

which several studies have revealed to have regulatory roles, are an ancient family

of tRNA derived SINEs [67, 119]. Indeed, their long standing high conservation in

mammalian genomes was for long the basis of the expectation that they encode some

unknown regulatory function [115]. Succeeding studies have shown MIRs to donate

transcription factor binding sites [106, 139], enhancers [92, 125], microRNAs [105] and
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cis natural anti sense transcripts [29] to the human genome. Furthermore, while TEs

are generally depleted from introns, MIRs are actually significantly enriched within

tissue-specific genes [117]. This strong association of MIR elements to tissue-specific

gene expression is noteworthy because it coincides with what has been observed for

the epigenetic chromatin state of enhancers.

Chromatin state has for long been known as an indicator of the activity or oth-

erwise of genes and other cis-regulatory elements [101, 145]. The chromatin state

at most cis-regulatory elements like promoters and CTCF-binding at insulators are

largely invariant across cell types. Curiously though, enhancers possess highly cell

type-specific histone modification patterns [54]. Thus enhancers are also related to

the spatiotemporal specificity of gene expression [17, 54]. We hypothesized this global

coincident association of both MIRs and enhancers to tissue-specific gene expres-

sion to be at least in part a consequence of MIR sequences frequently acting ei-

ther as enhancers and/or constituting fragments of enhancer- sequences. This would

be consistent with previously reported specific examples of TE-derived enhancers

[38, 88, 92, 95].

We thus sought to perform a specific genome-wide assessment of the relative preva-

lence of MIRs within enhancer sequences as well as the mechanistic basis and func-

tional consequences of this interaction. We found MIRs to not only be highly con-

centrated in enhancers, but to also constitute a significant part of the core of genic

enhancers. Indeed, this analysis identifies many more novel MIRs than previously

reported [57, 125] that act as independent enhancers, complete with the chromatin

profile of canonical enhancers. Furthermore, we report MIRs to be the major donors of

transcription factor binding sites (TFBSs) within enhancers, with consequent effects

on both the level and tissue-specificity of gene expression. Using the erythroid K562

cell-line as an example, we show MIR-enhancers to be involved in the modulation of

several tissue-specific biological processes related to erythropoiesis.
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3.3 Methods

3.3.1 Co-locating enhancers and MIRs

We used two sets of 24,538 and 36,550 putative transcriptional enhancers in the K562

and HeLa cell-lines respectively [54]. These enhancers were predicted as ENCODE

regions showing presence of coactivator protein p300 which is known to co-localize at

enhancers [62]. These p300 binding sites were themselves located using a chromatin

immunoprecipitation-based microarray method (ChIP-chip) [55, 60]. We considered

the span of enhancers to be the 8kb region around the predicted enhancer mid-points

which is about the range of the characteristic chromatin pattern at enhancers. Con-

currently, we also used the RepeatMasker (http://www.repeatmasker.org/) annota-

tions of the genomic coordinates of MIR elements as identified by the Repbase clas-

sification system [123, 148]. These MIR annotations on the human genome assembly

(NCBI build 36.1; UCSC hg18) were downloaded from the UCSC Genome Browser

[68, 109]. Another set of 19,536 transcriptional units derived from RefSeq gene anno-

tations as defined in Jjingo et al [61] was used to assess MIR densities within genes.

For both the K562 and HeLa cell-lines, regions of overlap between MIR genomic coor-

dinates and regions of interest were then determined using a perl script. This overlap

was performed separately for four different types of genomic elements/regions; genic

enhancers, genic non-enhancer regions (genic background), non-genic enhancers and

the core 200bp region around predicted enhancer mid-points. For each of the regions,

the density of MIRs was computed either as the fraction of the length of each region

in basepairs that is occupied by MIRs or their fold enrichment within the regions

relative to the local genomic background.

3.3.2 Histone modification profiles

Genome-wide ChIP-seq [62] data for 8 histone modification marks (H3K4me1, H3K27ac,

H3K36me3, H3K9ac, H3K4me2, H3K4me3, H4K20me1 and H3K27me3) in the K562
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and HeLa-S3 cell-lines was taken from the ‘ENCODE histone modification tracks’ of

the UCSC Genome Browser (assembly hg19). The data covers a range of 12.4-33.9

million sites for each histone mark in each cell-line. Genomic loci of 20kb centered on

canonical enhancers (all predicted enhancers), MIR-enhancers (enhancers with MIR-

derived cores) and enhancer-MIRs (MIRs 4kb of enhancer cores) were then evaluated.

Counts of each histone modification within each 500bp window across the 20kb re-

gion were then computed and their profiles represented as fold enrichments relative

to counts in the genomic background. The congruence of modification profiles be-

tween canonical enhancers and both enhancer-MIRs and MIR-enhancers was then

assessed in two ways. First a comparison of the fold enrichments of corresponding

windows across the 20kb region was done between canonical enhancers and both MIR-

enhancers and enhancer-MIRs (Figure 3.2, Supplementary figure B.2). Secondly, rank

ordered correlations from the above comparison were weighted by the slope of their

line-of-best-fit to establish the order of histone mark enrichment congruence between

canonical enhancers and both MIR-enhancers and enhancer-MIRs in each cell-line

(Figure 3.2D, Supplementary figure B.3B)

3.3.3 Transcription factor sites and binding analysis

Genome-wide enhancer-MIRs transcription factor binding sites were surveyed in two

stages. First, the occurrences of nine known TFBSs for ZNF274, ISGF3, ATF3, C-

JUN, NF-E2, TFIIIC, USF2, STAT1 and CEBP were counted. This was done by

transforming the binding sites into their matching regular expression patterns and

then searching and counting those patterns in the raw sequences of all enhancers-

MIRs. The same pattern search and counting was then performed on random se-

quences of equivalent number and length as the enhancer-MIRs. These random se-

quences were generated by drawing sequences from random genomic regions. Numbers

of patterns of binding sites within enhancer-based MIRs were then compared to those
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in the random sequences using a Chi-square test in which counts of the former were

considered the observed and those of the later as the expected (Figure 3.3A, Supple-

mentary figure 3.4A). Binding sites within enhancer-MIRs that are actually bound

were assessed for transcription factors NE-F2, C-JUN, USF2 and ZNF274 in the K562

cell-line. For each transcription factor, binding locations were downloaded from the

‘ENCODE transcription factor binding tracks’ of the UCSC Genome Browser (as-

sembly hg19). The peak tracks used contain regions of statistically significant signal

enrichment from ChIP-Seq experiments. For all transcription factors, sequences of

enhancer-MIRs overlapping with TF signal peaks were compiled. To check for exis-

tence of TFBSs, these sequences were screened with the MEME motif finding software

[3] which discovers motifs de-novo. They were also checked for canonical TFBSs using

matching regular expressions of the binding sites (Figure 3.4A,B). The enrichment

of TF binding in enhancer-MIRs relative to non-enhancer-MIRs was evaluated for a

wide range of transcription factors; 39 and 43 factors in K562 and HeLa cell-lines re-

spectively (see Supplementary figure 3.4B for their identities). For each TF, the fold

enrichment was computed as the log2 of the ratio of the sum of signal values for all

peaks mapping to enhancer-MIRs to the sum of signal values for all peaks mapping

to non-enhancer-MIRs.

3.3.4 Relating gene expression and tissue-specificity to enhancers-MIRs

Two sets of gene expression data were used. The first consisted of exon microarray

data for six ENCODE cell-lines (K562, HeLa-S3, GM12878, HepG2, H7Hesc and HU-

VEC). This was taken from the ‘ENCODE Exon Array’ track of the UCSC Genome

Browser (assembly hg19) and compiled as outlined in Jjingo et al [60], resulting in

18,654 genes with expression data. The second dataset with expression data in 79 tis-

sues and cell-lines was from the Norvatis gene expression atlas [123]. It was processed
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and compiled as previously outlined [61], and consisted of 15,658 genes to which ex-

pression data could be assigned. For both datasets, a tissue-specificity index (TS) for

each gene was computed using a previously described formula [148]:

TS =

∑N
i=1(1− xi)
(N − 1)

(2)

where N is the number of tissues and xi represents a gene’s signal intensity value

in each tissue i divided by the maximum signal intensity value of the gene across

all tissues. For each gene, the density of enhancer-MIRs in and around the gene

(from 10kb upstream to 10kb downstream) was computed by dividing the number of

enhancer-MIRs in that genomic range by the number of basepairs in the range. The

density values of the enhancer-MIRs were then divided into 100 equal bins whose

average densities were regressed against their respective average expression levels

(Figure 3.5A, Supplementary figure B.5A). Similarly, regression of the densities of

enhancer-MIRs in and around each gene (from 100kb upstream to 100kb downstream)

against tissue-specificity values of the genes was also performed after binning the data

into 100 bins. This second regression was separately done against tissue-specificity

values computed from the six ENCODE cell-lines above (Figure 3.5B, Supplementary

figure B.5B) and tissue-specificity values computed from the 79 tissues in the Norvatis

gene expression atlas (Figure 3.5C, Supplementary figure B.5C).

3.3.5 Functional analysis

The functional effects of enhancer-MIRs were evaluated using erythroid (K562)-

specific enhancer-MIRs (defined as enhancer-MIRs present in K562 and absent in

HeLa). First, we assembled all genes within 100kb of tissue-specific enhancer-MIRs,

and considered these to be associated with those enhancers. We then used a hy-

pergeometric test to check for enrichment of these enhancer-MIR associated genes

within a set of 350 genes that have been shown to be highly regulated in erythroids
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across four stages of erythropoiesis [99]. Furthermore we again used the hypergeo-

metric test to investigate if the enhancer-MIR associated genes are significantly active

in 9 erythroid (K562) cellular functions. This was done by checking for enrichment

of enhancer-MIR associated genes within sets of genes annotated to constitute the

pathways of the cellular functions. The gene sets for the 9 cellular functions (Supple-

mentary Table ST2) were obtained from the Broad Institute’s molecular signatures

database (MSigDB) collections of the gene set enrichment analysis (GSEA) software

(http://www.broadinstitute.org/gsea/msigdb/index.jsp). For one of these gene sets,

gene expression levels were previously determined at the various stages of erythro-

poiesis [1]. We compared the expression levels of enhancer-MIR associated genes in

this gene set to approximate stages of erythropoiesis (Figure 3.6B). We then used

the UCSC genome browser to illustrate enhancer-MIRs located in the locus control

region of the α-globin gene cluster which is important for haemoglobin formation

(Figure 3.6C). This cluster contains genes HBZ and HBA1 which are enhancer-MIR

associated and are differentially expressed in the various stages of erythropoiesis.

3.4 Results and discussion

3.4.1 MIRs are highly concentrated in enhancers

As noted in the introduction, MIRs are the only TEs that show a positive associa-

tion with tissue-specific gene expression [61]. Similarly, unlike other cis-regulatory

elements, enhancers are marked with highly cell type-specific histone modification

patterns [54] and are accordingly also highly related to tissue specific gene expression

[17, 54]. We thus sought to test our working hypothesis that this functional correspon-

dence between MIRs and enhancers is largely a consequence of MIR sequences either

frequently acting as enhancers and/or constituting fragments of enhancer sequences.

The genomic coordinates of 24,538 and 36,550 putative transcriptional enhancers

in the K562 and HeLa cell-lines respectively [54] were intersected with those of 19,536
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genes derived from RefSeq annotations as non-overlapping transcriptional units [61].

This yielded 1,917 and 2,090 genes with enhancers in their gene bodies in the K562

and HeLa cell-lines respectively. For each of these genes, its resident enhancers and

its non-enhancer sequences were intersected with a set of all genomic MIRs from the

UCSC Genome Browser [68, 109], yielding MIR densities within both genic enhancers

and genic non-enhancer regions. Within gene bodies, MIRs show significantly higher

densities in enhancers than in non-enhancer sequences (P -values 2.0e-16 and 5.9e-13

for K562 and HeLa cell-lines respectively) (Figure 3.1A, Supplementary figure B.1A.

MIRs have been previously reported to be enriched within genic regions of certain

genes[117]. Our data clearly reveal this genic enrichment to be strongly biased towards

enhancers. Infact, we find MIRs to be critical components of the cores of genic

enhancers, where on average MIR-derived sequences constitute 35% and 31% of the

core 200bp regions at the center of enhancers in K562 and HeLa cell-lines respectively

(Figure 3.1B, Supplementary figure 3.1B). This enrichment is 8 and 7 fold higher than

MIR density in genic non-enhancer sequences in K562 and HeLa cell-lines respectively.

To expand the investigation beyond gene bodies, we evaluated MIR enrichment

in and around all genomic enhancers. We computed the number of MIRs in and

around 20kb loci centered on all genomic enhancers (N=24,538 and 36,550 for K562 &

HeLa cell-lines respectively) and compared it to MIR enrichment in the local genomic

background. The results reveal MIRs to be highly enriched around all enhancers

genome-wide, with upto ∼35% and ∼37% more MIRs around enhancers than in the

genomic background for K562 and HeLa cell-lines respectively (X 2 = 4592, P<1.0e-16

and X 2 = 7470, P<1.0e-16) (Figure 3.1C, Supplementary figure B.1C). Thus while

MIRs have been known to donate enhancers [57, 92, 125], these data show an even

deeper relationship, namely that MIRs are actually concentrated in enhancers.
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Figure 3.1: MIRs are highly concentrated within enhancers.(A) Heat maps
showing the average MIR densities of 100 equal bins of genes in the K562 cell-line.
Upper bars show average MIR density in the genic enhancers of each bin, while lower
bars show average MIR density in the corresponding non-enhancer sequences of the
genes in the same bin. Bins are arranged left to right in decreasing MIR densities
in genes. (B) Bar graph showing the density of MIRs in the core 200bp of genic
enhancers (white bars) versus the corresponding non-enhancer sequences of the genes
(grey bars). (C) Fold enrichment plots of MIRs in and around all genic enhancers
(Red) and intergenic enhancers (Green) relative to local background (Grey).

3.4.2 Numerous MIRs are autonomous enhancers or are linked to en-
hancers

Finding MIRs to be highly concentrated within enhancers, we sought to establish

the actual numbers of MIRs that are enhancers themselves as well as those that

lie within enhancer regions. Each enhancer was originally predicted to be anchored

around a single basepair locus [54]. If this core basepair was located in a MIR,

then such a MIR was accordingly classified as an enhancer. Hence forward, we call
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these MIR-enhancers. However some MIRs do not donate the core enhancer locus

but are located within the normal approximate 8kb span enhancers (as determined

from the average genomic span of enhancer chromatin patterns surrounding the core

locus of the enhancer). These were considered enhancer-linked MIRs and are hence

forward called enhancer-MIRs. There are thus two categories of MIRs with regard

to their particular relationship with enhancers; MIR-enhancers and enhancer-MIRs.

We found 934 and 1429 MIRs to be MIR-enhancers i.e.MIRs that are enhancers in

K562 and HeLa cell-lines respectively (supplementary Table ST4). This is in contrast

to the 669 and 996 MIRs that would be expected to be enhancers in the two cell-lines

respectively, if MIRs were randomly distributed among enhancers. Thus significantly

more MIRs than expected are enhancers in both K562 and HeLa (X 2 = 105, P<1.0e-16

and X 2 = 188, P<1.0e-16 respectively).

When this analysis was expanded to include all enhancer linked MIRs i.e. enhancer-

MIRs, the extent to which enhancers are connected to MIRs became even more appar-

ent. We found 16,144 and 26,520 enhancers to be linked to MIRs in K562 and HeLa

cell-lines respectively. This is in contrast to the 6559 and 9320 enhancers that would

be expected to be linked to MIRs in the two cell-lines respectively, if enhancers were

randomly distributed among MIRs. Thus ∼2.5 and 2.9 fold more enhancers than

expected are linked to MIRs in K562 and HeLa cell-lines (X 2 = 14007, P<1.0e-16

and X 2 = 31742, P<1.0e-16 respectively). To further confirm if the MIR-enhancers

and enhancer-MIRs identified above are legitimate enhancers or are enhancer linked

respectively, we compared their chromatin environment to that of all canonical en-

hancers.

H3K4me1 and H3K27Ac have been shown to be characteristically enriched at

enhancers and are thus indicative of enhancers [30, 54, 55, 107]. We found both

enhancer-MIRs and MIR-enhancers to have enrichments of the two modifications

similar to those of canonical enhancers (Fig 3.2, Supplementary figure B.2).
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Indeed, modification patterns for both categories of MIRs are highly congruous
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to that of regular enhancers in terms of position specific modification fold enrich-

ment (Figure 3.3C, Supplementary figure B.3A). However the order of histone mod-

ification congruity is tissue-specific with H3K4me1 showing the highest congruity in

K562 (Figure 3.2D, Supplementary figure B.3B -1st panel) while H3K27ac has the

highest congruity in HeLa (Supplementary figures B.3B -2nd and 3rd pannels). As

expected, enhancer-MIRs show a somewhat diminished enrichment and congruity of

the two modifications since this category includes enhancer-linked MIRs rather than

MIRs that are enhancers themselves. Interestingly, MIR-enhancers show a signifi-

cantly stronger enrichment of the enhancer distinguishing modifications H3K4me1

and H3K27Ac than the ‘canonical’ enhancers (P = 6.9e-14 and 9.6e-24; Paired T-test

for the two modifications) in K562 and HeLa cell-lines respectively. This suggests

MIR-enhancers to be the stronger relative to the average enhancer. Furthermore, the

numbers of MIR-derived enhancers identified here – 934 and 1429 (Supplementary file

2) in K562 and HeLa respectively, are significantly more than have been previously

reported [57, 125].

3.4.3 MIRs are enriched for TFBSs

Mechanistically, enhancers boost gene expression by recruiting transcription factors

(TFs) which in turn interact with promoters to recruit RNA polymerase II, hence

initiating and driving transcription [93]. Accordingly, one of the most plausible evo-

lutionary rationale for the exaptation of MIRs into enhancers and the co-opting of

MIRs into enhancer bodies would be if MIRs offered more TFBSs than would ordi-

narily be obtained from other genomic sequences.

We investigated this evolutionary possibility by performing a general survey of

the prevalence of some known TFBSs of TFs active in K562-specific cellular pro-

cesses (C-JUN, ZNF274, NF-E2) (Figure 3.3A) within enhancer-MIRs relative to

random genomic sequences. Additionally we did a similar survey for other TFs with
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Figure 3.3: Presence and activity of transcription factor binding sites in
enhancer-MIRs.(A) Number of TFBSs in enhancer-MIRs (Blue) and random ge-
nomic sequences (Grey). (B) Log2 fold enrichment of three TFs active in the K562
cell-line and bound to enhancer-MIRs relative to their binding levels to non-enhancer
MIRs in the K562 cell-line.

known TFBSs; (ISGF3, ATF3, TFIIIC, USF2, STAT1 and CEBP) (supplementary

Figure B.4A).

For 8 out of the 9 transcription factors, enhancer-MIRs possessed significantly

more TFBSs than random genomic sequences as shown by Chi-square tests (Fig-

ure 3.3A, Supplementary figure 3.4A). Using both the MEME motif finding software

[3] and regular expression searches, we find known TFBSs in TF-bound enhancer-MIR

sequences, as determined by co-location with ENCODE transcription factor ChIP-Seq

peaks (Figure 3.4A,B).

We then sought to show that this TF binding of TFBSs in enhancer-MIRs is not

only significantly higher than binding of TFBSs in non-enhancer-MIRs, but also holds

for a wide range of TFs. To do this, we compared the binding levels of each TF in
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enhancer-MIRs to those in non-enhancer-MIRs using a log2 fold enrichment index as

described in the methods section. In both K562 and HeLa, 37/39 and 38/44 TFs

respectively bind significantly more on enhancer-MIRs than on non-enhancer MIRs.

Thus enhancer-MIRs not only contain more TFBSs than random genomic sequences,

but are also actually bound significantly more than non-enhancer MIRs by a wide

range of TFs (Figure 3.3B, Supplementary figure 3.4B). Based on that evidence, we

posit that the evolutionary co-option of MIRs into enhancer bodies is atleast in part

due to their relatively larger and functionally relevant repertoire of TFBSs.
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Figure 3.4: TFBSs occurring in enhancer-MIRs (A) (Column three) TFBSs
predicted denovo by MEME software from enhancer-MIR sequences. (Column five)
Known TFBSs found by regular expression searches in enhancer-MIR sequences. (B)
Examples of TFBSs for C-JUN and ZNF274 predicted denovo by MEME software
from bound sequences of enhancer-MIRs. Start column shows the starting positions
of the TFBSs in the enhancer-MIR sequences while the P-value is the probability
that the TFBS exists within the sequence by chance.
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3.4.4 Enhancer-MIRs influence gene expression and tissue-specificity

To check if the observed extensive prevalence and TF binding capacity of enhancer-

MIRs translates into genome-wide regulatory effects, we related enhancer-MIR den-

sities to two gene expression parameters; gene expression level and gene tissue-

specificity. Enhancer-MIR densities in and around each gene were computed and

the 18,654 genes were then divided into 100 equal bins. The average enhancer-MIR

densities of the bins were then regressed against their corresponding average gene ex-

pression values. For both K562 and HeLa cell-lines, the density of enhancer-MIRs in

and around genes is significantly related to gene expression levels (r=0.50, P=5.9e-08

and r=0.46, P= 7.4e-07 respectively) (Figure 3.5A, Supplementary figure 3.5A).

To assess the effects of enhancer-MIRs on tissue-specificity, a similar procedure

as that above was repeated by regressing the binned expression levels of the 18,654

genes against their corresponding tissue-specificity values across six ENCODE cell-

lines. The regressions revealed significant relationships between enhancer-MIR den-

sities and tissue specificity in both K562 and HeLa cell-lines (r=0.37, P=7.6e-05 and

r=0.27, P=2.4e-03 respectively) (Figure 3.5B, Supplementary figure 3.5B). Although

these regressions against tissue-specificity were significant, they were rather weak and

we wondered if that might not be an artifact of the few tissues used to compute the

tissue-specificity index. We thus repeated the above protocol using the15,658 genes

from the Norvatis gene expression atlas whose tissue-specificity indices were com-

puted across 79 different tissues. This regression confirmed the relationship between

enhancer-MIRs and tissue-specificity by yielding much more significant correlations in

both cell-lines (r=0.74, P=7.1e-19 and r=0.66, P=4.0e-14 respectively) (Figure 3.5C,

Supplementary figure 3.5C). Taken together, these data reveal enhancer-MIRs to have

a significant association with the genome-wide patterns of both gene expression and

tissue-specificity.
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Figure 3.5: Effect of enhancer-MIRs on gene expression and tissue specificity
in the K562 cell-line.(A) Relationship between density of enhancer-MIRs and gene
expression levels. (B) Relationship between density of enhancer-MIRs and tissue-
specificity of gene expression across 6 ENCODE cell-lines. (C). Relationship between
density of enhancer-MIRs and tissue-specificity of gene expression across 79 tissues
from the Norvatis gene expression atlas. Pearson correlation coefficient values (r)
along with their significance values (p) are shown for all pairwise regressions.

3.4.5 Functional significance of enhancer MIRs

Since enhancer-MIRs are involved in driving tissue-specific gene expression, it is rea-

sonable to expect that there are some tissue-specific biological functions that they
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help regulate. We examined this prospect in the K562 cell-line by assessing the

functional roles of genes within 100kb of tissue-specific enhancer-MIRs. Of 19,538

non-overlapping Refseq genes, we found 3,798 (19.5%) to be associated with enhancer-

MIRs. We tested for relative enrichment of those genes within a set of 350 genes that

have been shown to be highly regulated in erythroids across four stages of erythro-

poiesis [99]. Of the 3,798 enhancer-MIR associated genes, 202 overlapped the set of

350 genes highly regulated in erythropoiesis or their close homologs. This overlap

is highly significant (P = 2.1e-57; Hypergeometric test) and suggests enhancer-MIRs

might have a profound impact on erythropoietic regulation.

We therefore broadened the analysis to include other biological processes related

to erythropoiesis. We tested for enrichment of enhancer-MIR associated genes in

nine gene sets of nine erythroid (K562) biological functions. The nine gene sets

were obtained from the Broad Institute’s molecular signatures database (MSigDB)

collections. Gene sets for 8 out of the 9 biological functions significantly overlapped

with enhancer-MIR associated genes (Figure 3.6A, Supplementary table ST2).

To further understand the impact that enhancer-MIRs might have, we considered

erythropoiesis, whose gene set has the most significant overlap with enhancer-MIR

associated genes. This erythropoiesis gene set contains genes with varying expres-

sion levels at the various stages of erythropoiesis [1]. We compared the expression

levels of enhancer-MIR associated genes (Table ST3) in this gene set to approximate

stages of erythropoiesis and found them to have varying expression levels, an indicator

that they are regulated during erythropoiesis (Figure 3.6B). We then used the UCSC

genome browser to illustrate that previously identified regulatory MIRs [65] are ac-

tually enhancer-MIRs located in the locus control region of the α-globin gene cluster

which is important for hemoglobin formation during erythropoiesis (Figure 3.6C).

This cluster contains genes HBZ and HBA1 which are enhancer-MIR associated and

are differentially expressed in the various stages of erythropoiesis (Figure 3.6B, C).
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Figure 3.6: Activity of enhancer-MIR associated genes in erythropoiesis.(A)
The bars represent level of enrichment of enhancer-MIR associated genes within gene
sets of the various biological functions on the x-axis. Dotted line represents the
threshold of significance. (B) Enhancer-MIR associated genes that are differentially
expressed or regulated at the various stages of erythropoiesis (shown below the line
graph). Genes represented by each colored rectangle are shown in the box below the
developmental pathway. (C) Enhancer-MIRs in the β-globin gene cluster locus con-
trol region (LCR). UCSC trucks of enhancer-MIRs, the LCR, histone modifications,
transcription factors active in K562, Pol2, DNAse hypersensitive sites and β-globin
genes regulated by the LCR.

Furthermore, it can be seen that the locus that contains the enhancer-MIRs recruits

TFs C-JUN, ZNF274 and NF-E2 that are important for K562-specific cellular pro-

cesses [66, 70, 76, 142]. Taken together, these results suggest that K562 specific

enhancer-MIRs are probably active in the regulation of genes involved in several

K562-related biological functions in general, and erythropoiesis in particular.
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CHAPTER 4

COMPOSITE CIS-REGULATORY ELEMENTS WITH

BOTH BOUNDARY AND ENHANCER SEQUENCES IN

THE HUMAN GENOME

4.1 Abstract

It has been suggested that presumably distinct classes of genomic regulatory elements

actually share common sets of features and mechanisms. To evaluate this possibil-

ity, we performed a bioinformatic screen for the existence of composite regulatory

elements in the human genome. We identified numerous co-located boundary and en-

hancer elements from human CD4+ T cells and provide evidence that such composite

regulatory elements facilitate cell-type specific functions related to inflammation and

immune response.

4.2 Introduction

Meticulous regulation of gene expression in eukaryotic genomes is required for the real-

ization of numerous biological processes such as differentiation, development, response

to stimuli and proper immune functioning. Cis- and trans- regulatory elements, to-

gether with epigenetic marks and chromosomal conformation [78, 79], represent some

of the major mechanistic features used to achieve this precise control. Cis-regulatory

elements are non-protein-coding DNA sequences required for proper spatiotemporal

patterns of expression of proximal genes, and they frequently contain binding sites for

transcription factors [58]. Cis-elements are typically small and modular in nature and

function in a manner independent of their location or orientation relative to their tar-

get genes [12]. Their small size and modular nature has enabled detailed functional

55



characterization of cis-regulatory elements using reporter constructs in transgenic

animals. Consequently, several types of cis-regulatory elements have been identified

and classified, including transcriptional promoters [46], promoter-tethering elements

[18], enhancers [5], silencers [81], locus control regions (LCRs) [50, 86] and boundary

elements [127], which may include enhancer-blocking insulators [69].

Among all cis-regulatory elements, enhancers exhibit the highest flexibility and

modularity [5, 89] and are also essential drivers of the spatiotemporal specificity of

gene expression [17, 54]. Mechanistically, enhancers can boost gene expression by

recruiting transcription factors, which interact with promoters to recruit RNA poly-

merase II, leading to the initiation of gene transcription [93]. Transcription factors

bound on enhancers can loop over long genomic distances to reach promoters, thereby

giving enhancers the ability to influence the expression of distal genes. In addition to

providing binding sites for transcription factors, enhancers can also function via the

initiation of non-coding RNA transcripts [71], which may facilitate the stabilization of

long range enhancer-promoter interactions via the recruitment of RNA binding factors

[103]. The long-range capacity of enhancers can however be inhibited by boundary

elements, particularly enhancer-blocking insulators [69]. Boundary element insulating

activity protects genes in domains located on the active sides of boundaries against

activating or repressive regulatory effects of both flanking and distant domains. In

this way, enhancer-blocking insulators play a critical role in facilitating the specificity

of interactions between enhancers and genes located in the same chromosomal do-

mains [45, 144]. As such, boundaries and enhancers have hitherto been considered

to be functionally antagonistic, and thus to occupy distinct and separate loci in the

genome. Accordingly, to date no genomic loci have been reported to simultaneously

encode the functional capacities of both enhancers and boundaries.

Nevertheless, it has previously been suggested that boundaries and enhancers

might actually employ a common set of regulatory features and strategies, and more
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generally, that many of the accepted distinctions between classes of regulatory el-

ements may be overstated [44]. Considering this possibility, together with the co-

ordinated regulatory activities of boundaries and enhancers, we sought to evaluate

whether there actually exist co-located composite boundary-enhancer loci in the hu-

man genome. We found that numerous composite boundary-enhancer loci do in fact

exist in the human genome, and we show that these genomic elements have epigenetic

and regulatory features that are distinct from those seen for individual regulatory el-

ements of either class.

4.3 Methods

4.3.1 Boundaries, enhancers and composite elements

We used a set of 2,542 putative boundary elements in CD4+ T cells. These boundaries

were computationally predicted from experimental data using an unbiased algorithm

that relies on the the genomic distributions of chromatin and transcriptional states

[141]. Briefly, the algorithm performs a genome-wide maximal segment assessment of

ChIP-seq data for histone modifications (chromatin state) [7] and RNA Pol II-binding

data (transcriptional state)[6]. It then predicts a genomic locus to be a boundary if 1)

it shows a transition point between facultatively euchromatic (with activating histone

modifications) and heterochromatic (with repressive histone modifications) domains,

and 2) if it shows a transition from sparse to enriched Poll II distribution. We also used

a set of 23,574 enhancers, also in CD4+ T cells. The enhancers were computationally

predicted from experimental data using an algorithm that combines support vector

machines (SVMs) with genetic algorithm optimization (ChromaGenSVM) [37]. The

algorithm automatically selects and uses only the histone marks that best character-

ize active enhancers. It also automatically optimizes the window size of the epigenetic

profiles and other SVM hyperparameters and about 90% of its enhancer predictions
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were supported by atleast one type of experimental evidence[36, 52, 142]. As bound-

ary elements (∼8kb) are larger than enhancers (∼1kb), we searched for loci where any

part of an enhancer overlaps or lies within an annotated boundary region. Boundary

elements were thus divided into two types; the ‘composite’ elements with enhancers

(B+E) and the canonical, non-composite elements without enhancers (B-E). A bi-

nomial test of enrichment was then performed to check for statistical enrichment of

enhancers within boundary elements. For this test, the frequency of enhancers in the

genomic background (number of enhancers divided by genome length) was used to

compute the expected value μ(μ=expected density (7.59e-6 × total length of bound-

aries (2543×8000)=154.4. This was in turn used to compute a Z -score whose P -value

could be computed. Z =
(x
n
−p)√

(pq/n)
wherex = 265, n = 23574, µ = 154.4, p = µ/n .

4.3.2 Chromatin analysis

Four genome-wide functional genomic datasets generated in CD4+ T cells were an-

alyzed. These included ChIP-seq generated genomic distributions for eight different

histone modifications drawn from thirty eight [7], genomic sites for 95,710 DNase

I hypersensitive sites [13], ChIP-seq generated genomic locations of ∼2 million Pol

II binding sites [7] and ∼8.3 million RNA-seq tags [6]. For all datasets, tags were

re-mapped to boundary regions on the human genome reference sequence (assembly

hg18). For each dataset, tags mapping to 500bp windows spanning a region of 20kb

centered on boundary elements were computed and divided by number of tags in

500bp of genomic background to yield the fold enrichment. The above mapping was

separately performed for regions centered on standalone boundary elements (B-E) and

boundary elements co-locating with enhancers (B+E) (Figure 4.1C,D and C.1C,D).

For each dataset, tests of significance of difference in fold enrichment were done us-

ing paired T-tests between B+E and B-E regions and are shown with corresponding

averages of fold enrichment as bar plots (Figure 4.1C,D and C.1 A,B,C,D). For the
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evaluation of histone modifications, a subset of 8 histone marks (H3K4me1, H3K27ac,

H3K36me3, H3K9ac, H3K4me2, H3K4me3, H4K20me1 and H3K27me3) in the CD4+

cell-line [143] was used (Supplementary figure 4.1A,B). To simplify the assessment, a

combined histone mark fold enrichment index, defined simply as the sum of the fold

enrichments of all individual histone marks was computed and plotted for both B+E

and B-E elements (Figure 4.1C).

4.3.3 Gene expression analysis

32,128 Refseq annotations from the human genome assembly hg18 were downloaded

from the UCSC genome browser [42]. The Refseq annotations were then compiled into

19,539 non-overlapping transcriptional units whose expression levels were determined

as previously described [61] using 44,776 probe sets across 79 human tissues [123].

Genes within 15kb on the open side of boundary elements were then obtained for

both B+E (N=109) and B-E (N=1615) elements. For insight into tissue-specificity,

expression of each gene in CD4+ T cells was compared with its corresponding average

expression in the rest of the 78 tissues, yielding two arrays; one with expression values

in CD4+ T cells and another with the corresponding average expression values in the

rest of the 78 tissues. Averages for both arrays were then computed for B+E and B-E

elements and plotted (Figure 4.1E). Similarly, the difference in gene expression levels

between genes within15kb on the closed chromatin side and genes within 15kb on the

open chromatin side of both B+E and B-E elements was computed in both CD4+ T

cells and the 78 other tissues (Figure 4.1F).Gene expression levels were compared for

CD4+ T cells against the 78 other human tissues using t-tests and z-tests.

4.3.4 Gene set enrichment analysis

Gene set enrichment analysis was performed by evaluating the distribution of func-

tionally coherent sets of genes, as defined by shared Gene Ontology (GO categories
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or presence in the same KEGG pathways, around composite (B+E) versus non-

composite (B-E) boundary elements. The hypergeometric test was used to evaluate

the significance of the enrichment of genes within a defined functional group around

sets of regulatory elements.

4.4 Results and discussion

4.4.1 Composite regulatory element discovery approach

We evaluated the existence of composite mphcis-regulatory elements in the human

genome by searching for genomic loci that are predicted to function simultaneously

as both boundary elements and enhancers (Figure 4.1A).

To do this, we leveraged the availability of large-scale functional genomic data

sets. In particular, application of high-throughput sequencing to chromatin immuno-

precipitation (ChIP-seq) [62] has enabled genome-wide mapping of numerous histone

modifications. Detailed analyses of these datasets has led to the discovery of char-

acteristic patterns of histone modifications for a variety of genomic regulatory fea-

tures including both boundary elements [141] and enhancers [11, 137]. Subsequently,

these regulatory element-specific histone modification profiles have been used to de-

velop computational algorithms that can accurately predict regulatory elements from

genome-wide ChIP-seq data sets. For example, Wang et al. used ChIP-seq data for

histone modifications and RNA Pol II-binding [7] to perform a genome-wide predic-

tion of human chromatin boundaries [141]. Likewise, computational algorithms have

been used to predict enhancers in several human cell lines [37, 54]. For our study, we

analyzed the locations of boundaries and enhancers predicted in this way for human

CD4+ T cells, owing to their vital role in immune function and to the availability of

robust sets of regulatory element prediction datasets for these cells. There are 2,542

predicted boundary elements [141] and 23,574 predicted enhancers [37] for CD4+ T

cells.
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Figure 4.1: Composite regulatory elements and their features in the hu-
man genome.(A) A composite regulatory element possessing both boundary (blue)
and enhancer (red) sequences. (B) Overlap between predicted enhancers (red) and
boundaries (blue). (C, D) Enrichment profiles and average fold enrichments for hi-
stone modifications and Pol2 binding in-and-around boundary elements (blue bars).
(E) Average gene expression for boundary element proximal genes in CD4+ T cells
(grey) and 78 other tissues (white). (F) Average gene expression level differences, be-
tween the open versus closed chromatin sides of boundaries, for CD4+ T cells (grey)
and 78 other tissues (white).
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4.4.2 Enrichment of composite boundary-enhancer elements in the hu-
man genome

We intersected the human genome coordinates of predicted boundary elements with

those of predicted enhancers and found 174 genomic locations with co-located bound-

ary and enhancer annotations (Figure 4.1B and supplementary Table ST5). These

composite regulatory elements represent ∼7% of all boundary elements and 1% of all

enhancers in our dataset. The boundary element predictions used here cover broader

genomic regions (8kb) than the enhancer predictions (1kb); thus, composite boundary

elements may be co-located with multiple enhancers. We compared the observed oc-

currence of composite regulatory elements against their expected level of occurrence,

based on the background genomic frequencies of the individual element classes (see

Methods), in order to ensure that their presence could not be attributed to chance

alone. A binomial test of enrichment revealed enhancers to be significantly enriched

within boundary elements relative to their genomic background frequency (Z=5.39,

P<10-5); there are 72% more enhancers occurring in boundaries than can be expected

by chance alone.

The over-representation of enhancers within predicted boundary regions can be

considered to be surprising in light of the fact that boundaries have until now only

been known to have a presumably antagonistic enhancer-blocking activity [69]. On the

other hand, this finding may reflect the proposition that classes of regulatory elements

typically considered to be distinct actually share sets of features and mechanisms [44].

In any case, the enrichment of enhancers within predicted boundary element regions

suggests an important functional role for these composite regulatory elements. We

explored this possibility via feature analysis of composite cis-regulatory elements.
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4.4.3 Composite boundary-enhancer elements possess unique regulatory
features

The enrichment of enhancers within boundary element regions suggests the possi-

bility that these composite boundary-enhancer regulatory elements represent a func-

tionally distinct combination of their individual regulatory element constituents. If

this indeed proves to be the case, then one may expect to observe distinct regulatory

features, e.g. chromatin and expression profiles, for composite regulatory elements

when compared to those of their individual constituent regulatory elements. To test

this prediction, we compared chromatin and expression profiles from CD4+ T cells

for composite boundary-enhancer regulatory elements (designated as B+E) versus

boundary element regions that lack co-located enhancers (designated as B-E). This

was done using ChIP-seq data for 8 histone modifications [7, 143] to evaluate the

chromatin modification state, DHS site data [13] to evaluate the openness of local

chromatin, as well as RNA Pol II-binding data [7] and RNA-seq [6] data to evaluate

transcriptional states.

For each of these data sets, enrichment plots showing fold en-richment compared

to genomic background levels were computed for 20kb genomic regions centered on

boundaries that are co-located with enhancers (B+E elements) versus boundaries

alone (B-E elements) (Figure 4.1C and D and Supplementary Figure C.1). In addi-

tion, the overall average fold enrichment levels across these regions were determined.

When considered jointly, the 8 histone modifications show significantly higher enrich-

ment for composite B+E regions than seen for B-E regions. These particular histone

modifications were chosen owing to their previously characterized associations with

boundary elements and/or enhancers [37, 54, 55]. In addition, the individual modifi-

cations can be considered to be ‘active’ or ‘repressive’ based on their associations with

the promoters of genes expressed at different levels in CD4+ T cells [37, 54, 55, 143].

With respect to the individual histone modifications, 7 out of 8 histone modifications,
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all of which can be considered to be active modifications, show increased enrichment

around the composite B+E elements (Supplementary Figure C.1B). The sole excep-

tion to this pattern is seen for the repressive modification H3K27me3. Furthermore,

it can be seen that the overall levels of histone modifications are higher for the active

side of the boundaries (boundary start position till +10kb) than for the repressive

side (-10kb till boundary start position), and this effect is also more pronounced for

composite B+E elements than seen for boundary elements only B-E regions (Fig-

ure 4.1C).

Similar patterns of greater B+E enrichment compared to B-E regions can be seen

for Pol II binding data, DHS sites and RNA-seq data (Figure 4.1D and Supplemen-

tary Figure 4.1C and D). The RNA-seq data show a qualitatively distinct pattern

compared to the other data sets with an extremely marked peak close to boundary

element start position. This pattern could indicate that B+E elements most actively

protect gene expression in their most proximal regions and could also point to a spe-

cific role for expression of non-coding RNAs in establishing boundary element and

enhancer activity. Support for both of these possibilities has previously been reported

[91, 141].

Considered together, the results from this analysis suggest the possibility that

composite B+E regulatory elements modulate chromatin structure and facilitate tran-

scriptional changes in a more profound manner than do boundary element only B-E

regions.

4.4.4 Composite boundary-enhancer elements enhance cell type-specific
gene expression

The more distinct chromatin changes and relatively higher tran-scriptional activity

across B+E regulatory elements suggests the possibility that composite regulatory el-

ements may help to facili-tate higher expression levels of proximal genes than bound-

ary only B-E elements. Indeed, since enhancers are known to boost gene expression
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levels, we expect their inclusion into boundary element regions to result in higher

expression of nearby genes. To test this prediction, we compared the relative expres-

sion levels of genes proximal to the active and repressive sides of boundaries for B+E

versus B-E elements. For CD4+ T cell expression levels, B+E elements yield greater

average expression levels on the active sides of boundaries than seen for B-E elements

(Figure 4.1E), and they also create greater expression level differences between the

active versus repressive sides of the elements (Figure 4.1F). Furthermore, this effect

can be seen to be cell type-specific, as these changes are much more pronounced

in the CD4+ T cells where the regulatory elements were predicted compared to a

panel of 78 additional cell types and tissues (Figure 4.1E and F). As seen for the

chromatin environment and boundary-specific expression data discussed previously

(section 3.3), these data underscore the distinct, and more pronounced, regulatory

features associated with composite B+E regulatory elements compared to boundary

only B-E elements.

4.4.5 Potential functional significance for composite boundary-enhancer
elements

Gene set enrichment, based on Gene Ontology (GO) and KEGG pathway annotations,

was used to evaluate the potential functional significance of composite boundary

elements for CD4+ T cells. To do this, the set of genes that lie proximal to B+E

elements were evaluated for evidence of coherent functional signatures that could

be related to T cell-specific or immune-related function. This analysis revealed two

categories of genes that are significantly enriched around B+E elements and encode

proteins with functions that are directly relevant to CD4+ T cell activity; these are

genes involved in the chemokine signaling pathway (GO:007098) and genes related to

the formation of voltage-gated potassium ion channel complexes (GO:0008076).

Chemotaxis, growth, differentiation and apoptosis of inflammatory cells like T-

lymphocytes and eosinophils, are achieved via the chemokine signaling pathway, which
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is largely dependent on the activation of PIK3 kinases [14, 31, 73]. Chemokine signal-

ing pathway genes are significantly enriched around composite B+E elements (Hyper-

geometric test; P=2.6e-6), compared to B-E boundaries (P=0.1.3e-3), and chemokine

signaling pathway genes proximal to composite elements are also expressed at higher

levels, on average, in CD4+ T cells (Figure 4.2A,B and Supplementary Figure C.2).

Chemokine Signaling Pathway Genes 

Symbol Description 

Src Proto-oncogene tyrosine-protein kinase  

ELMO1 Engulfment and cell motility protein 1 

PLCβ 1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase beta 

PIK3 Phosphatidylinositide-3-kinase 

GRB2 Growth factor receptor-bound protein 2 

GRK G protein-coupled receptor kinase 

ROCK Rho-associated, coiled-coil containing protein kinase  

P130CAS Breast cancer anti-estrogen resistance protein  

FAK protein tyrosine kinase 2 
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Figure 4.2: Composite regulatory elements and the chemokine signaling
pathway.(A) Chemokine signaling pathway genes proximal to composite (B+E) reg-
ulatory elements. (B) Enrichment of chemokine signaling pathway genes, and CD4+

T cell expression levels, for composite (B+E) versus canonical (B-E) boundary ele-
ments. (C) Composite (B+E) boundary elements flanking the PIK3 gene and open
chromatin as measured by DHS sites. (D) PIK3-dependent chemokine signaling path-
way. Ligand (purple), membrane receptor (blue).

A specific example of this can be seen for the PIK3 gene, which is functionally

central to the chemokine signaling pathway (Figure 4.2C). PIK3 is expressed at higher

levels in CD4+ T cells (SI=3,463) relative to other human cells/tissues (avg.SI=755),

and indeed there are two B+E composite elements that can be seen to flank the

gene thus helping to maintain a relatively open chromatin environment in this region

(Figure 4.2D).

Potassium transmembrane transport is essential for efficient antigenic activation
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and proliferation of T-cells [25, 26]. Blockage of T-cell potassium channels inhibits

cytokine production and lymphocyte proliferation in vitro and suppresses immune

response in vivo [25, 26, 77], leading to pathogenesis characteristic of autoimmune

diseases like multiple sclerosis [146, 147]. Genes that encode voltage-gated postas-

sim ion channels are significantly enriched around B+E elements (Hypergeometric

test; P=4.5e-7), compared to B-E boundaries (P=0.07), and are also associated with

higher levels of CD4+ T cell-specific expression levels (Supplementary Figure C.3).

In particular, 5 G protein-activated inwardly rectifying potassium channels (GIRKs)

which are responsible for transporting K+ ions into cells are associated with B+E

elements, only 1 is associated with B-E elements, and the only small conductance

calcium-activated potassium channel associated with boundaries (Kca3.1) is B+E

associated (Supplementary Figure C.3C).

4.5 Conclusions

Data reported here support the existence of composite regulatory sequence elements

that encode both boundary and enhancer activities with relevance to T-cell specific

functions. These findings are consistent with the notion there is substantial overlap

between regulatory element function and identity suggesting that regulatory elements

from different classes share mechanistic features and modes of action.
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CHAPTER 5

ON THE PRESENCE AND ROLE OF HUMAN

GENE-BODY DNA METHYLATION

5.1 Abstract

DNA methylation of promoter sequences is a repressive epigenetic mark that down-

regulates gene expression. However, DNA methylation is more prevalent within gene-

bodies than seen for promoters, and gene-body methylation has been observed to be

positively correlated with gene expression levels. This paradox remains unexplained,

and accordingly the role of DNA methylation in gene-bodies is poorly understood.

We addressed the presence and role of human gene-body DNA methylation using a

meta-analysis of human genome-wide methylation, expression and chromatin data

sets. Methylation is associated with transcribed regions as genic sequences have

higher levels of methylation than intergenic or promoter sequences. We also find that

the relationship between gene-body DNA methylation and expression levels is non-

monotonic and bell-shaped. Mid-level expressed genes have the highest levels of gene-

body methylation, whereas the most lowly and highly expressed sets of genes both

have low levels of methylation. While gene-body methylation can be seen to efficiently

repress the initiation of intragenic transcription, the vast majority of methylated sites

within genes are not associated with intragenic promoters. In fact, highly expressed

genes initiate the most intragenic transcription, which is inconsistent with the pre-

viously held notion that gene-body methylation serves to repress spurious intragenic

transcription to allow for efficient transcriptional elongation. These observations lead

us to propose a model to explain the presence of human gene-body methylation. This

model holds that the repression of intragenic transcription by gene-body methylation
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is largely epiphenomenal, and suggests that gene-body methylation levels are predom-

inantly shaped via the accessibility of the DNA to methylating enzyme complexes.

5.2 Introduction

DNA methylation is a crucial epigenetic mark with roles in embryogenesis and differ-

entiation [47], X-inactivation [53], imprinting [85] and repression of viral and repeat

sequences [138]. Changes in patterns of DNA methylation have been implicated in the

pathogenesis of several human diseases [59, 110] including cancer [35]. One long estab-

lished role of DNA methylation in promoter regions is the repression of transcription

[24, 47, 74]. As a result, methylation is largely depleted from the promoter regions of

genes. In contrast, DNA methylation in gene bodies is surprisingly abundant and has

been reported to show a positive correlation with gene expression [2, 4, 56, 83, 88, 108]

even though it can interfere with transcription elongation [90]. The apparent contra-

diction between the activities of DNA methylation in promoters versus gene bodies

has been referred to as the DNA methylation paradox [63]. Here, we address this

paradox in an effort to better understand the presence and role of DNA methylation

in human gene bodies.

Repression of spurious transcription within genes is one possible explanation for

the prevalence of gene-body methylation. Indeed, relatively low average levels of

DNA methylation genome-wide have been taken to suggest that the primary role of

methylation is the repression of spurious transcription rather than the regulation of

promoters per se [10, 63]. More recently, Cap Analysis of Gene Expression (CAGE)

data have confirmed that transcription is very frequently initiated from within genes,

albeit at lower levels than seen for canonical 5’ gene promoters [21, 94]. Thus, it is

reasonable to assume that there may be some need to repress this intragenic tran-

scription. Repression of intragenic promoters by DNA methylation could allow for

more efficient transcriptional elongation, thus accounting for the reported positive
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correlations between gene expression and gene-body methylation levels.

This model predicts a negative correlation between levels of gene-body methy-

lation and the initiation of intragenic transcripts. Such a negative correlation was

recently shown for the case of the human SHANK3 locus where intragenic methyla-

tion regulates intragenic promoter activity [94]. This same study showed that within

intragenic CpG islands genome-wide, there is an overall negative correlation between

transcription initiation and methylation levels. Nevertheless, the extent to which this

relationship holds across gene-bodies is unclear since there are numerous CpG sites

and promoters outside of CpG islands [112].

The notion that gene-body methylation serves to repress intragenic transcription,

thereby allowing for more efficient transcriptional elongation also rests on the re-

ported clear and monotonic positive correlations observed between gene expression

levels and gene-body methylation[4, 56, 83, 88, 108]. However, the relationship be-

tween gene-body methylation and expression levels appears to be more complicated

than previously imagined. In some plants and invertebrates, the relationship is not

monotonic but rather bell shaped with genes expressed at the mid-range levels having

the highest methylation levels [149, 152]. More recently, when a variety human tissue

types were analyzed, some showed a monotonic positive correlation between expres-

sion and gene-body methylation whereas others showed no apparent relationship [2].

Thus, it remains uncertain whether repression of spurious intragenic transcription

best explains the high levels of observed gene-body DNA methylation.

Here, we revisit this issue taking advantage of the recent accumulation of genome-

scale datasets provided by the ENCODE [100, 126] and RIKEN groups. In particular,

the availability of genome-wide human methylation [98], expression [8, 21, 43, 75, 130]

and chromatin datasets [7, 111] provide deep resolution for an interrogation of the

DNA methylation paradox. Meta-analysis of these genome-scale data sets revealed

that 1) the relationship between gene-body DNA methylation and gene expression
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is non-monotonic rather than linear, and 2) while gene-body DNA methylation does

serve to repress spurious transcription, that role does not explain the majority of

methylation in gene-bodies. These results suggest a model whereby gene-body DNA

methylation is chiefly determined by DNA accessibility to methylating enzymes during

transcription, and the repression of intragenic transcription is simply an epiphenom-

enal byproduct of this process. The model accounts for the majority of gene-body

methylation, which cannot be explained by the need to repress spurious transcription

alone. It also explains the observed non-monotonic relationship between gene-body

DNA methylation and gene expression.

5.3 Methods

5.3.1 Human gene loci

Gene annotations for the March 2006 build of the human genome reference sequence

(NCBI build 36.1; UCSC hg18) were taken from the ‘RefSeq Genes’ track of the

UCSC Genome Browser [68, 109]. Individual genes were defined as distinct genomic

loci encompassing all overlapping RefSeq transcripts from the start of the 5’ most exon

to the end of the 3’ most exon. A total of 32,128 RefSeq transcripts were merged into

19,539 genes that represent distinct gene loci.

5.3.2 DNA methylation

Genome-wide DNA methylation data for the GM12878, K562, HepG2, HeLa-S3 and

H1Hesc cell-lines were taken from the ‘ENCODE DNA methylation track’ of the

UCSC Genome Browser (assembly hg19). Methylation data were generated using

the Reduced Representation Bisulfite Sequencing (RRBS) technique [98] and cover

approximately 1.26-1.47 million CpG sites in each of the five cell-lines. The RRBS

methylation data are represented as percent methylation for each covered CpG site,

and herein DNA methylation levels for any locus or genomic region were computed

as the average percentage methylation of all cytosine residues covered therein.
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5.3.3 Gene expression

Exon microarray data for six ENCODE cell-lines (GM12878, K562, HepG2, HeLa-S3,

H1Hesc and HUVEC) were taken from the ‘ENCODE Exon Array’ track of the UCSC

Genome Browser (assembly hg19) [8, 21, 43, 75, 130]. The data were generated using

the Affymetrix Human Exon 1.0 ST GeneChip and analyzed using Affymetrix ExACT

1.2.1 software with samples quantile normalized using the PM-GCBG background

correction and PLIER (probe logarithmic intensity error) summary. Here, the log2

normalized average signal intensity of all exons mapping to an individual gene locus

was taken to represent the overall expression of the gene. This resulted into a final

set of 18,632 genes for which expression data was available in all cell-lines.

Cap Analysis of Gene Expression (CAGE) data [20, 75, 130] were taken from the

‘RIKEN CAGE Loci’ track of the UCSC Genome Browser (assembly hg18). Nucleus

CAGE clusters for GM12878 (1.18 million), K562 (8.86 million) and HepG2 (5.89

million) cell-lines were analyzed here. Discretely located CAGE clusters were taken

as individual proximal promoters (or TSS), and promoter expression levels were com-

puted as the number of CAGE tags in a cluster divided by the length of the cluster.

Intronic CAGE expression levels were calculated in the same way over entire gene

loci.

5.3.4 RNA Polymerase II (Pol2)

RNA Polymerase II (Pol2) binding site ChIP-seq data [7, 40, 62, 131, 151] were taken

from the ‘HAIB TFBS’ track of the UCSC Genome Browser (assembly hg18). The

ChIP-seq reads were re-mapped to the human genome reference sequence (assembly

hg18) in order to rescue individual tags that map to multiple genomic locations as

previously described [140], resulting in approximately 18.78, 6.78, 13.86, 6.78, 20.84,

22.61 and 12.34 million reads in the GM12878, K562, HepG2, HeLa-S3, H1Hesc and

HUVEC cell-lines respectively. For each locus, Pol2 binding density was computed
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as the number of tags mapping on the locus, divided by the length of the locus.

5.3.5 DNaseI Hypersensitive Sites (DHSS)

DNaseI Hypersensitive Site (DHSS) data, generated using the digital analysis of chro-

matin structure (DACS) technique [111, 140], were taken from the ‘UW DNaseI HS’

track of the UCSC Genome Browser (assembly hg18). The DACS sequence reads

were re-mapped to the human genome reference sequence (assembly hg18) in order

to rescue individual tags that map to multiple genomic locations as previously de-

scribed [140], resulting in approximately 30.40, 35.15, 27.32, 44.10, 28.59 and 38.40

million reads in the GM12878, K562, HepG2, HeLa-S3, H1Hesc and HUVEC cell-

lines respectively. For each locus, DHSS density was computed as the number of tags

mapping on the locus divided by the length of the locus.

5.4 Results

5.4.1 Meta-analysis of genome-wide methylation, expression and chro-
matin data sets

The ENCODE project has generated a rich collection of elements that associate with

DNA sequences and have functional consequences for the way the genome is regu-

lated. For this study, we made use of four datasets from the ENCODE project: 1)

DNA methylation data generated by RRBS[98, 111, 140], 2) gene expression data

generated from human exon microarrays[8, 43], 3) RNA polymerase II (Pol2) binding

locations generated by ChIP-Seq [7, 40, 62, 131, 151] and 4) the genomic locations

of DNaseI hypersensitive sites (DHSS) generated by the digital DNaseI technique

[22, 111]. Additionally, we used a fifth dataset from the RIKEN Omics Science cen-

ter made up of CAGE tags that characterize the 5’ ends of full-length transcripts

[75]. All five of these datasets were available for three cell-lines (GM12878, K562 and

HepG2), which together entail the primary focus of the study, and different subsets of

the same five datasets were available in three additional cell-lines (HeLa-S3, H1hESC
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and HUVEC) (Tabletable 6)). These datasets were analyzed in various combinations

across cell-lines in order to interrogate specific aspects of the relationship between

DNA methylation, chromatin and gene expression.

Table 6: Genome-wide expression and chromatin datasets analyzed in
this study.a Specific aspect of gene expression or chromatin being measured.
bExperimental technique or assay used. cENCODE cell types for which the data
are available. dGene Expression Omnibus (GEO) accession numbers for the data.
ePubMed IDs (PMID) for the references reporting the data

Measure
a
 Technique

b
 Cell types

c
 

GEO 

accessions
d
 

PMID
e
 

DNA methylation 
Reduced representation 

bisulphite sequencing 

GM12878 

K562 

HepG2 

HeLa-S3 

H1hESC 

GSE27584 18600261 

Gene expression Exon microarray 

GM12878 

K562 

HepG2 

HeLa-S3 

H1Hesc 

HUVEC 

GSE19090 19966280 

Intragenic 

transcription 

initiation 

Cap analysis of gene 

expression (CAGE) 

GM12878 

K562 

HepG2 

N/A 

16489339 

8938445 

19074369 

RNA Pol2 

binding density 

Chromatin 

immunoprecipitation 

followed by high-throughput 

sequencing (ChIP-Seq) 

GM12878 

K562 

HepG2 

HeLa-S3 

H1Hesc 

HUVEC 

GSE32465 

17556576 

17540862 

19160518 

18798982 

DNaseI 

hypersensitive 

site density 

Digitial DNaseI 

GM12878 

K562 

HepG2 

HeLa-S3 

H1Hesc 

HUVEC 

GSE8962 

GSE7411 

15550541 

16791208 

 

5.4.2 A non-monotonic relationship between gene-body methylation and
human gene expression

The DNA methylation paradox is borne of the fact that in human promoter regions

CpG methylation is negatively correlated to gene expression levels, while in gene
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bodies CpG methylation is apparently positively correlated to gene expression [10].

Furthermore, recent genome-scale analyses of human methylation and gene expression

suggest that this relationship is monotonic, i.e. gene-body methylation levels rise

consistently across increasing intervals of gene expression [4, 83, 88, 108].

We further evaluated this paradoxical relationship using DNA methylation and

gene expression data from ENCODE cell-lines (Table 6). To do this, percent DNA

methylation values in-and-around gene-bodies were compared across five gene expres-

sion level quintiles. Consistent with previous reports in human cell-lines [4, 83], DNA

methylation levels around transcription start sites (TSS) at the 5’ ends of genes show

a clearly negative and monotonic correlation with gene expression levels (Figure 5.1

and Supplementary Figure D.1). The TSS regions of highly expressed genes are rel-

atively depleted for DNA methylation whereas genes expressed at lower levels are

increasingly methylated.

However, the relationship between gene-body methylation and expression levels

is different from what has been described before; gene-body methylation levels show

a bell-shaped, rather than monotonic, relationship with gene expression levels (Fig-

ure 5.1 and Supplementary Figure 5.1). Generally, mid-level expressed genes in the

3rd and 4th quintiles have the highest DNA methylation percentages while those in

the 2nd and 5th quintiles show medium DNA methylation percentages and those

in the 1st quintile show the lowest DNA methylation percentages. A similar bell-

shaped relationship between gene-body methylation and expression levels has been

observed previously in plants (Arabidopsis thaliana and Oryza sativa) and inverte-

brates (Ciona intestinalis and Nematostella vectensis) [149, 152]. Human gene-body

methylation levels measured here are about the same as those of those of the TTS

regions but higher than those seen for both the regions surrounding TSS and the

associated intergenic regions (Figure 5.1 and Supplementary Figure D.1).

In light of the unexpected but distinct non-monotonic relationship for human

75



7

22

37

52

67

TSS Gene Body TTS

7

22

37

52

67

TSS Gene Body TTS

7

22

37

52

67

TSS Gene
Body

TTS

0

20

40

60

-3 -2 -1 0 1 2 3 4 5 -5 -4 -3 -2 -1 0 1 2 3

0

20

40

60

-3 -2 -1 0 1 2 3 4 5 -5 -4 -3 -2 -1 0 1 2 3

0

20

40

60

-3 -2 -1 0 1 2 3 4 5 -5 -4 -3 -2 -1 0 1 2 3

%
 m

et
h

yl
at

io
n

  

Distance from TSS  and TTS in Kb 

TSS TTS 

TSS TTS 

TSS TTS 

GM12878 

K562 

HepG2 

A B 
GM12878 

K562 

HepG2 

%
 m

et
h

yl
at

io
n

  

%
 m

et
h

yl
at

io
n

  

%
 m

et
h

yl
at

io
n

  

%
 m

et
h

yl
at

io
n

  

%
 m

et
h

yl
at

io
n

  

1st 5th 
Gene expression quintiles 
2nd 3rd 4th 

low high 

Figure 5.1: DNA methylation levels around the TSS, gene-body and TTS
across five gene expression level bins (A) Average percentage methylation lev-
els of 100bp windows spanning the TSS, gene-body and TTS, showing 3kb and 5kb
upstream and downstream of TSS respectively and 5kb and 3kb upstream and down-
stream of TTS respectively. (B) Overall average (± standard error) percentage methy-
lation levels for TTS, gene-body and TTS.
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gene-body methylation and gene expression observed here, we sought to evaluate this

pattern at a higher level of resolution. To do this, human genes were divided into

100 expression level bins, and then methylation and gene expression levels were re-

gressed across these intervals. This analysis further revealed a clearly non-monotonic

and bell-shaped relationship between gene-body methylation and gene expression in

all five human cell lines for which methylation data was available (Figure 5.2 and

Supplementary Figure 5.2). The mid-level expressed genes showed the highest DNA

methylation levels while both the lowest and highest expressed genes had markedly

lower DNA methylation levels.

DNA methylation levels have also been found to be related to gene length [150].

We thus sought to check if the bell-shaped relationship we found between gene-body

methylation and gene expression is not infact a reflection of the relationship between

DNA methylation and gene length. To do this, we checked if the bell-shaped relation-

ship would still be present for sets of genes with widely differing lengths. We found

a similar bell-shaped non-montonic relationship between gene-body methylation and

gene expression for both the 20% shortest and 20% longest genes suggesting that the

relationship is independent of gene length (Supplementary Figure D.3).

5.4.3 Gene-body methylation represses the initiation of intragenic tran-
scription

DNA methylation was originally thought to serve primarily to repress spurious tran-

scription [10], and gene-body methylation has been shown to repress the activity of

intragenic promoters [94]. Thus, it may be the case that gene-body methylation serves

to repress spurious transcription from intragenic promoters, thereby allowing for more

efficient transcriptional elongation. This kind of repressive role for DNA methylation

could explain the relative abundance of DNA methylation within gene-bodies and its

reported positive correlation with gene expression.
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Figure 5.2: A non-monotonic relationship between gene-body DNA methy-
lation and gene expression. Overall percentage methylation of gene-bodies (re-
gions starting at 1kb downstream of the TSS and ending at 1kb upstream of the TTS
of genes) is regressed against gene expression for (A) GM12878 (B) K562 and (C)
HepG2. Genes are grouped into 100 gene expression bins.

To evaluate this possibility here, we used CAGE data to analyze the relation-

ship between gene-body methylation and the repression of intragenic transcription.

Intronic CAGE clusters mark intragenic promoters and the levels of transcriptional

initiation from these intragenic promoters are characterized by the number of CAGE
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tags per intronic cluster [21, 94]. We mapped intragenic promoters across three EN-

CODE cell-lines using CAGE, and then DNA methylation levels at these intragenic

promoters were regressed against the promoter activity levels measured by CAGE

tag density. For all three cell-lines, this analysis revealed significantly negative cor-

relations between the DNA methylation levels of intronic promoters and their cor-

responding transcriptional initiation levels (Figure 5.3A). These data are consistent

with the repression of intragenic promoters by DNA methylation. Indeed, a similar

analysis of canonical TSS from the 5’ ends of the genes, where the repressive role of

DNA methylation is well known, yields qualitatively identical results (Figure 5.3B).

5.4.4 Gene-body methylation, transcription and open chromatin

TheResults from the previous section indicate that gene-body methylation can re-

press intragenic transcription. Accordingly, if the primary role of gene-body methy-

lation is to repress spurious intragenic transcription, then there should be more DNA

methylation at intronic promoters than at intronic sites that do not initiate tran-

scription. However, we find the vast majority of gene-body DNA methylation maps

to sites that do not initiate transcription (Figure 5.4A). Presumably, this majority

fraction of intronic DNA methylation does not serve to repress transcription. Fur-

thermore, levels of gene-body methylation are highly positively correlated for these

two classes of intronic sites: transcriptional initation sites and non-transcriptional

initiation sites (Figure 5.4B-D). In other words, there is no particular enrichment of

DNA methylation at intragenic promoters compared to their surrounding genic envi-

ronment. Rather, DNA methylation levels are consistent across introns of individual

gene-bodies and appear to be largely determined by something other than the need

to repress intragenic transcription.

These results instead suggest that gene-body DNA methylation is deposited onto

introns by a mechanistically independent process, and that only a small fraction of the
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Figure 5.3: Relationship between DNA methylation and promoter activity
levels. Percent DNA methylation levels are regressed against CAGE expression levels
(i.e. promoter activity) for (A) intronic and (B) canonical 5’ gene promoters. Genes
are grouped into 100 gene expression bins. Pearson correlation coefficient values (r)
along with their significance values (P) are shown for each regression.
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Figure 5.4: Comparison of length and DNA methylation attributes of in-
tronic promoters and intronic sites without transcription initiation. (A)
Percentage of intronic length occupied by transcription initiation sites (black) and
versus sites without transcription initiation (grey). Percent DNA methylation lev-
els for transcription initiation sites are regressed against methylation levels for non-
transcription initiation sites for (B) GM12878, (C) K562 and (D) HepG2 cell-lines.
Genes are grouped into 100 methylation level bins. Pearson correlation coefficient
values (r) along with their significance values (P) are shown for each regression.

DNA methylated sites are involved in the silencing of spurious intragenic transcrip-

tion. The relationship we observe between gene-body DNA methylation and gene

expression (Figure 5.2) suggests that the transcriptional elongation process, together

with its associated open chromatin, might account for much of gene-body methylation.

If gene-body methylation is linked to transcriptional elongation, then transcribed re-

gions would have higher levels of DNA methylation relative to un-transcribed regions.
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Figure 5.5: Comparison between genic and intergenic average (± standard
error) DNA methylation levels in GM12878, K562 and HepG2 cell-lines.

In fact, we observe that human genic regions do have substantially higher levels of

DNA methylation than seen for intergenic regions (Figure 5.5 and Supplementary Fig-

ure D.4). In addition, a similar elevation of DNA methylation levels for transcribed

genic regions has been reported in a number of other species [124, 149].

DNA methylation is clearly associated with the presence of transcribed gene re-

gions, and levels of transcription for these gene regions are expected to be associated

with a distinct chromatin environment including high occupancy levels of Pol2 and the

presence of demonstrably open chromatin. To test this, we regressed gene expression

levels against Pol2 occupancy levels and the extent of open chromatin measured by

the presence of DNaseI hypersensitive sites (DHSS). Both Pol2 occupancy levels and

the extent of open chromatin are in fact highly positively correlated with gene expres-

sion across all six ENCODE cell-lines evaluated here (Figure 5.6 and Supplementary

Figure 5.5).

When considered together with the data showing that gene-body methylation

accumulates independent of the need to repress spurious intragenic transcription

(Figure 5.4), these results suggest that the presence of open chromatin per se is
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Figure 5.6: Relationship between chromatin environment and gene expres-
sion levels (A) Pol2 occupancy and (B) density of DHSS sites are regressed against
gene expression. Genes are grouped into 100 gene expression bins. Pearson correla-
tion coefficient values (r) along with their significance values (P) are shown for each
regression.

an important prerequisite for the deposition of gene-body methylation. However, the

relationship between gene-body methylation and open chromatin is non-monotonic,

suggesting that the extent of open chromatin alone does not determine gene-body

methylation levels. In the discussion section, we propose a specific model to explain

the presence of gene-body DNA methylation that accounts for this complexity.
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5.5 discussion

DNA methylation is a well known repressive chromatin mark when associated with

promoter regions. However, DNA methylation is far more prevalent in gene-bodies

than in promoters and the role of gene-body methylation is still not clearly under-

stood. In this study, we performed a meta-analysis of genome-wide methylation,

expression and chromatin data sets in an attempt to better understand the presence

and role of gene-body DNA methylation.

We show that levels of DNA methylation are more clearly related to the presence

of transcribed regions than to the impetus to repress spurious intragenic transcription.

However, the quantitative relationship between gene-body methylation and expres-

sion levels in non-monotonic and bell-shaped. On the other hand, the relationships

between gene expression levels and Pol2 occupancy along with open chromatin are

positive and monotonic. Considered together, these results link gene-body methyla-

tion to transcription and open chromatin, albeit in a complex and non-linear way.

Here, we propose a specific model to explain the presence of gene-body DNA methy-

lation in light of these results.

Our model rests on the notion that the deposition of DNA methylation is mech-

anistically facilitated, to some extent, by open and actively transcribed chromatin.

In support of this contention, a biochemical study demonstrated that DNA methyl-

transferase 1 (DNMT1) interacts with Pol2 by binding the C-terminal repeat domain

of Pol2 [22]. It has also been shown that the catalytic domain of DNMT1 needs to

directly bind to DNA and to transit along the DNA molecule in order to function

[41, 134]. Nevertheless, the bell-shaped relationship between gene-body methylation

and expression levels indicates that open and actively transcribed chromatin does

not completely determine gene-body methylation. On the contrary, there appears

to be some trade-off between the openness of the chromatin and the levels of DNA

methylation, and we also try to account for this in our model.
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The model explaining levels of gene-body methylation is illustrated in Figure 5.7

and can be summarized as follows. The extent of nucleosome packaging seen for un-

expressed and compact chromatin would not allow for access to the DNA by DNMT1,

effectively blocking DNA methylation. At low levels of transcription, transiting Pol2

complexes disrupt nucleosome packaging and open up the chromatin thereby exposing

CpG sites for methylation. Therefore, levels of gene-body methylation will increase

with increasing levels of expression at the low end of the expression spectrum. How-

ever, as genes become increasingly highly expressed, the density of transiting Pol2

becomes so high as to begin to interfere with the processivity of DNMT1 along DNA.

This leads to a progressive reduction of gene-body methylation levels with increasing

expression levels at the high end of the expression spectrum. Therefore, the most

lowly and the most highly expressed genes will have the lowest levels of methyla-

tion, whereas genes expressed at intermediate levels will have the highest gene-body

methylation, as seen here for humans and elsewhere for other species [149, 152].

While we find this model to be mechanistically compelling for the reasons de-

scribed above, it does not directly address the demonstrated role of gene-body DNA

methylation in repressing spurious intragenic transcription. To investigate this fur-

ther, we re-evaluated the intronic CAGE data in light of the non-monotonic relation-

ship between gene expression and gene-body methylation levels. Regressing intronic

CAGE levels against gene expression data and comparing this relationship to that seen

for methylation and expression reveals a coincident inflection point between the two

curves where methylation levels fall off to such an extent as to begin to allow for the

initiation of transcription from intragenic promoters (Figure 5.8). This observation

unites the DNA accessibility model for gene-body methylation that we propose with

the role of methylation in repressing intragenic transcription. However, the juxtapo-

sition of these two phenomena can also be taken to suggest the intriguing possibility

that the observed repression of intragenic transcription by methylation is simply a
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by-product of relative accessibility levels to the DNA by methylating enzymes.

The relationship between gene expression levels, Pol2 density and initiation of

transcription from intragenic promoters also serves to distinguish our observations

and model from what has previously been proposed for A. thaliana [152]. The A.

thaliana model also attempted to explain an observed bell-shaped distribution for

gene-body methylation with respect to expression, and the model held that gene-body

methylation was facilitated by the transcription of siRNAs from intragenic promoters.

Transcription of these intragenic siRNAs was thought to be facilitated by the progres-

sive opening of the chromatin from low-to-mid levels of expression, and then these

siRNAs would interact with their cognate DNA sequences to attract the methylation
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Figure 5.8: Decreasing levels of gene body methylation, starting from mid-
levels of gene expression are correlated with increasing levels of intronic
expression. Highly expressed genes are represented by pink background while lowly
expressed genes are represented by light blue background. (A) Gene expression levels
are regressed against percent gene-body methylation (top curve) and levels of in-
tronic expression (bottom curve). (B) Comparison of average intronic transcription
(open bars) and average percentage methylation (grey bars) between lowly and highly
expressed genes.

machinery in situ. However, at high levels of transcription, Pol2 density was thought

to be too great to allow for the initiation of intragenic transcription thus accounting

for the low levels of methylation for highly expressed genes. On the contrary, here

we observe that the initiation of transcription from intragenic promoters increases

steadily with increasing expression and Pol2 occupancy levels peaking among highly

expressed genes that also show low levels of gene-body methylation (Figure 5.8).

It should also be noted that our observations on the relationship between expres-

sion level and gene-body methylation, at the high end of expression, are consistent
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with previous results showing that gene-body methylation interferes with transcrip-

tional elongation [90]. Thus, the patterns observed here may also point to incompati-

bility and selection against high levels of gene-body methylation for highly expressed

genes.
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CHAPTER 6

CONCLUSIONS

In summation, this thesis is constituted by four chapters, which try to address knowl-

edge gaps and longstanding questions at the intersection of three interrelated areas

of human genome regulation; 1) repetitive DNA evaluated from the perspective of

transposable elements, 2) epigenetics as evaluated from the standpoint of gene-body

DNA methylation and 3) cis-regulation, which is assessed with regard to the nature

and diversity of cis-regulatory elements. CHAPTER 2 establishes the relationship

between the transposable element environment of human genes and their expression,

and evaluates both the ‘selection’ and the ‘genomic design’ hypothesis. Following

the discovery in chapter 2 that a specific family of transposable elements (MIRs) is

associated with tissue-specific gene expression, CHAPTER 3 evaluates the possible

mechanism behind that relationship, and addresses its associated functional implica-

tions. CHAPTER 4 examines human genome regulation by assessing the nature and

diversity of cis-regulatory elements with respect to boundary elements and enhancers.

It clarifies a recent postulation that distinctions between certain classes of elements

are in some cases not definitive. Finally, CHAPTER 5 investigates the longstanding

DNA methylation paradox. It addresses important aspects of that paradox, particu-

larly, the relationship between gene-body DNA methylation and gene expression, and

the role and dynamics of gene-body DNA methylation. Various studies have found

transposable elements to influence gene expression and phenotype [39, 65, 96]. These

discoveries have negated prior assertions that transposable elements are merely ‘junk

DNA’ with no important effects on genome regulation [32, 102]. CHAPTER 2 builds

on that body of knowledge, revealing that apart from the exaptation of individual
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TEs for specific functions [15, 16], the TE environment of human genes itself is related

to gene expression in very TE class-specific ways. It quantifies the apparent effects of

the density of various classes and families of TEs in and around genes on gene expres-

sion. Further, using multiple regression models, CHAPTER 2 achieves the separation

of the effects of TEs from the effects of gene length on gene expression. That analysis

shades light on the distinct effects of these two interrelated aspects of gene architec-

ture, finding TEs to be more important than gene length for gene expression. That

separation is then used to assess the two long-standing hypotheses that have been

used to explain the shortness of highly expressed genes i.e. the selection hypothesis

[23] and the genomic design hypothesis [135], finding the selection hypothesis to be

more plausible. Finally CHAPTER 2 shows a specific family of TEs (MIRs) to be the

only one positively related to tissue-specific gene expression. The discovery in CHAP-

TER 2 that MIRs are the only tissue-specific TEs is further evaluated in CHAPTER

3 in an effort to try and understand the mechanism behind that relationship. Here,

the specific loci at which MIRs exercise their effects on tissue specific gene expression

genome-wide are established to be enhancers. CHAPTER 3 reveals MIRs to be highly

concentrated in enhancers, which are the genomic elements that have been previously

linked to tissue-specific expression [54, 55]. The prevalence of TFBSs within these

enhancer associated MIRs is surveyed and found to be significantly higher than their

frequencies in the genomic background. This finding suggests the donation of TF-

BSs to be one of the reasons for the extensive exaptation of MIRs into enhancers

and their subsequent long standing conservation in the human genome and their ex-

tensive presence in mammalian genomes. Using the K562 cell-line as the example,

this chapter shows the densities of MIR-enhancers around genes to be significantly

related to their expression levels. Infact further analysis reveals that association to

be functionally relevant, as exemplified by the enrichment of MIR-enhancer associ-

ated genes in various biological processes related to erythropoiesis which is a function
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largely specific to the K562 cell-line. It has been recently postulated that distinctions

between various classes of cis-regulatory elements may not be as definitive as pre-

viously thought. CHAPTER 4 examines this possibility by using recently predicted

genome-wide boundary elements and enhancers to re-evaluate the nature and diver-

sity of cis-regulatory elements. A genome-wide bioinformatics scan of the two types

of elements establishes the existence of 174 composite cis-regulatory elements. These

are genomic loci that simultaneously encode both boundary and enhancer functions

and at which the two elements are physically co-located. Additionally, both the epige-

netic environment (DNAse hypersensitive sites, Pol2 and histone modifications) and

gene expression parameters (expression level and tissue-specificity) of genes associated

with these elements are revealed to be significantly higher than for the non-composite

locations. This distinct effect of composite cis-regulatory elements is also reflected

at the functional level, where upon evidence is elicited that in CD4+ T cells, these

elements potentially facilitate cell-type specific functions related to inflammation and

immune response. The DNA methylation paradox [63] has for long been a perfect

example of our inadequate understanding of the dynamics underlying the effects of

epigenetics in general and DNA-methylation in particular on the genome regulation

landscape. CHAPTER 5 addresses important aspects of the DNA methylation para-

dox, particularly the relationship between gene-body DNA methylation and gene

expression, and the role and dynamics of gene-body DNA methylation. Using Chip-

seq datasets that have recently become available owing to the recent advancement of

sequencing technologies, this chapter re-evaluated this longstanding paradox. First,

the results here found that contrary to previous reports [2, 4, 56, 83, 88, 108], the

relationship between gene-body DNA methylation and gene expression is not linear

but non-monotonic and bell-shaped. Secondly, while confirming previous findings

that gene-body DNA methylation represses aberrant intragenic transcription [10, 94],

chapter 5 finds evidence that this role is only epiphenomenal and not the reason for
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presence of DNA methylation in gene-bodies. This finding is based on a proposed

model derived from a collation of the various analyses in the chapter which points to

the deposition of gene-body DNA methylation to be regulated by dynamics related

to the access of DNA to methylating complexes rather than the evolutionary need

to repress intragenic transcription initiation. In total therefore, this thesis provides

several new insights in the nature, mechanisms and effects of repetitive DNA, DNA

methylation and cis-regulation on human genome regulation.

92



Appendices

93



APPENDIX A

SUPPLEMENTARY INFORMATION FOR CHAPTER 2

Table ST1: TEs classified based on whether they are long (>400bp) or short
(<400bp). Almost all SINES are short, but there are significant numbers of the
other TE classes or families that are long. Nevertheless an overwhelming percentage
of TEs in genes are short.

ALU MIR L1 L2 DNA LTR

All TEs 237018 130293 104129 83702 90399 43304

TEs < 400bp 237012 130292 71031 72614 83825 30591

% TEs <400bp 99.997 99.999 68.214 86.753 92.728 70.642
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Figure A.1: Demarcating transcriptional units on the genome and Mapping
TEs to TUs.(A) Transcriptional units were mapped as genomic regions encompass-
ing all overlapping transcripts, from the start of the 5’ most exon to the end of the
3’ most exon. (B) TE fractions in TUs were computed for each TE family as the
number of base pairs occupied by a TE as a fraction of all base pairs in the TU. The
figure shows the average TE fraction of each TE family in all the TUs.
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Figure A.2: The relationship between TE fractions of genes and GL. Correla-
tions of TE levels and gene length for all TE types. Each data point represents a bin
containing 156 genes. The significant p-value of correlation by Bonferroni correction
is 8.3× 10-3
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Figure A.3: Relatedness of tissues in which MIR-rich genes are maximally
expressed. Chi-square analysis showing enrichment of certain related tissues (mostly
blood tissues [blue]) and depletion of certain other related tissues (mostly nervous
tissues [purple]) among tissues hosting the maximum expression of MIR-rich genes.
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APPENDIX B

SUPPLEMENTARY INFORMATION FOR CHAPTER 3
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Figure B.1: MIRs are highly concentrated within enhancers.(A) Heat maps
showing the average MIR densities of 100 equal bins of genes in the HeLa cell-line.
Upper bars show average MIR density in the genic enhancers of each bin, while lower
bars show average MIR density in the corresponding non-enhancer sequences of the
genes in the same bin. Bins are arranged left to right in decreasing MIR densities
in genes. (B) Bar graph showing the density of MIRs in the core 200bp of genic
enhancers (white bars) versus the corresponding non-enhancer sequences of the genes
(grey bars). (C) Fold enrichment plots of MIRs in and around all genic enhancers
(Red) and intergenic enhancers (Green) relative to local background (Grey).
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Figure B.2: The chromatin environment of MIR-enhancers and enhancer-
MIRs is similar to that of canonical enhancers. Fold enrichment of histone
modifications within 20kb regions centered on different categories of elements (A)
Canonical enhancers, (B) MIR-enhancers, (C) Enhancer-MIRs in HeLa cell-lines and
(D) Enhancer-MIRs in K562 cell-lines
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Table ST2: Enrichment statistics of enhancer-MIR associated genes in gene sets of
biological functions linked to erythropoiesis. Enrichment was computed using the
hypergeometric test of enrichment.

Biological process 

Geneset 

size  

Overlap with 

enhancer-MIR genes 

Hypergeometric 

P-value 

-log10 

(P-value) 

Erythropoiesis (erythroid differentiation) 73 44 2.0 x 10-14 13.7 

Interphase of mitotic cell cycle 62 32 1.1 x 10-8 12.7 

Hemopoietic or lymphoid organ development 76 43 6.5 x 10-13 12.5 

Myeloid cell differentiation  37 22 8.0 x 10-8 12.2 

Immune system development 80 46 4.7 x 10-14 8.0 

Homeostasis of a number of cells 20 12 6.5 x 10-5 7.1 

Hemopoiesis 74 43 1.9 x 10-13 4.2 

Regulation of myeloid cell differentiation 19 10 1.0 x 10-3 3 

Negative regulation of myeloid cell development 10 4 8.2 x 10-2 1.1 

H3K4me1 H3K27Ac H3K36me3 H3K9Ac H3K4me2 H3K4me3 H4K20me1 H3K27me3 
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Figure B.3: Histone modifications patterns around enhancer-MIRs and
MIR-enhancers are congruent to that around canonical enhancers.(A) Con-
gruence of histone modifications fold enrichment between MIR categories and canon-
ical enhancers. Datapoints represent the histone modification fold enrichments for
windows equally distant from the centers of the respective MIR categories in each
plot. (B) Rank order of correlations of modifications fold enrichments between MIR
categories and canonical enhancers weighted by slope.
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Table ST3: The genes are differentially expressed at the various stages of erythro-
poiesis. Genes with the same color are co-expressed and correspond to the color codes
in Figure 5.

Gene Symbols Gene Descriptions 

CTSH Cathepsin H 

INSIG1 Insulin induced gene 1 

ITGB5 Integrin, beta 5 

NFYA Nuclear transcription factor Y, alpha 

PTP4A3 Protein tyrosine phosphatase type IVA, member 3 

PTPN7 Protein tyrosine phosphatase, non-receptor type 7 

APOC1 Apolipoprotein C-I 

BIRC5 Baculoviral IAP repeat-containing protein 5 

GFI1B Growth factor independent 1B transcription repressor 

ICAM3 Intercellular adhesion molecule 3 

LMO2 LIM domain only 2 (rhombotin-like 1) 

MT2A Metallothionein 2A 

MYB MYB v-myb myeloblastosis viral oncogene homolog 

SOCS2 Suppressor of cytokine signaling 2 

ADAM10 A disintegrin and metalloproteinase domain-containing protein 10 

DHX9 DEAD/H box polypeptide 9 

GTF2I General transcription factor II, i 

SLC2A14 Solute carrier family 2 (facilitated glucose transporter), member 14 

SLC43A3 Solute carrier family 43, member 3 

GYPA Glycophorin A (MNS blood group) 

KLF1 Kruppel-like factor 1 (erythroid) 

NCOA1 Nuclear receptor coactivator 1 

NPL N-acetylneuraminate pyruvate lyase (dihydrodipicolinate synthase) 

SLC27A2 Solute carrier family 27 (fatty acid transporter), member 2 

CREM cAMP responsive element modulator 

DDIT4 DNA-damage-inducible transcript 4 

HSPA5 Heat shock 70kDa protein 5 (glucose-regulated protein, 78kDa 

IER3 Immediate early response 3 

IER5 Immediate early response 5 

AKR1C1 Aldo-keto reductase family 1, member C1 

ATF5 Activating transcription factor 5 

HBA1 Hemoglobin, alpha 1 

IL8 Interleukin 8 

RTN4 Reticulon 4 

UCP2 Uncoupling protein 2 (mitochondrial, proton carrier) 

CTSL1 Cathepsin L1 

HSPA1B Heat shock 70kDa protein 1B 

PIM1 Pim-1 oncogene 

DNAJB4 DnaJ (Hsp40) homolog, subfamily B, member 4 

HBZ Hemoglobin, zeta 

MAFG MAFG v-maf musculoaponeurotic fibrosarcoma oncogene homolog G 

OSGIN1 Oxidative stress induced growth inhibitor 1 

TXNRD1 Thioredoxin reductase 1 

NPRL3 Nitrogen permease regulator-like 3  
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Figure B.4: Presence and activity of transcription factor binding sites in
enhancer-MIRs.(A) Number of TFBSs in enhancer-MIRs (Blue) and random ge-
nomic sequences (Grey). (B) Log2 fold enrichment of TFs bound to enhancer-MIRs
relative to non-enhancer MIRs in K562 and HeLa cell-lines.
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Figure B.5: Effect of enhancer-MIRs on gene expression and tissue speci-
ficity in the HeLa cell-line.(A) Relationship between density of enhancer-MIRs
and gene expression levels. (B) Relationship between density of enhancer-MIRs and
tissue-specificity of gene expression across 6 ENCODE cell-lines. (C). Relationship
between density of enhancer-MIRs and tissue-specificity of gene expression across 79
tissues from the Norvatis gene expression atlas. Pearson correlation coefficient values
(r) along with their significance values (p) are shown for all pairwise regressions.
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Lists of genomic locations of core loci of MIR-enhancers

K562 HeLa

Chromosome Position Chromosome Position

chr1 160608516 chr1 107290131

chr1 165466216 chr1 107953231

chr1 171791116 chr1 108014231

chr1 179364016 chr1 109552531

chr1 179388116 chr1 110118731

chr1 180141416 chr1 110137231

chr1 194136416 chr1 113486231

chr1 200119916 chr1 115560731

chr1 201524216 chr1 115771531

chr1 201875316 chr1 117909031

chr1 203536216 chr1 118442831

chr1 203913516 chr1 118711031

chr1 203971416 chr1 143875763

chr1 204803778 chr1 143931563

chr1 204815678 chr1 150184601

chr1 204911678 chr1 154365201

chr1 206114678 chr1 154382601

chr1 209574978 chr1 155384501

chr1 219207678 chr1 156265301

chr1 221417894 chr1 156274001

chr1 222647638 chr1 158023201

chr1 227552238 chr1 161342216

chr1 229404138 chr1 162133916

chr1 232724438 chr1 162848716

chr1 232731038 chr1 163781016

chr1 232785838 chr1 166838616

chr1 234584232 chr1 166843716

chr1 234781332 chr1 170490216

chr1 235038232 chr1 171426616

chr1 235143332 chr1 173415616

chr1 242572232 chr1 174081816

chr1 244022232 chr1 175326116

chr1 244235332 chr1 178822316

chr1 244299032 chr1 181306016

chr2 9738303 chr1 181507316

chr2 11775303 chr1 184952616

chr2 11988803 chr1 185890516

chr2 12025303 chr1 190713116

chr2 12167103 chr1 190759816

chr2 12226403 chr1 191893216

chr2 16482903 chr1 191916616

chr2 17624403 chr1 195366916

chr2 20663003 chr1 197969616

chr2 21306003 chr1 199711916

chr2 26089403 chr1 200119816

chr2 26093903 chr1 200342816

chr2 27091603 chr1 201929816

chr2 28418803 chr1 203522316

chr2 28443303 chr1 203714016

chr2 28786803 chr1 204161416

chr2 30530303 chr1 204186516

chr2 37763203 chr1 205482378

chr2 38623503 chr1 206373778

chr2 42984903 chr1 207191878

chr2 46351203 chr1 207548878

chr2 46422503 chr1 207589578

chr2 46631703 chr1 208532978

chr2 47063203 chr1 209832078

chr2 48347903 chr1 209883078

chr2 48405803 chr1 210737878

chr2 48514403 chr1 212695478

chr2 60838703 chr1 212765778

chr2 62297903 chr1 215425278

chr2 65198703 chr1 215515378

chr2 65431603 chr1 216621578

chr2 65476803 chr1 217114778

chr2 65569303 chr1 221272278

chr2 68465503 chr1 221664494

chr2 68848803 chr1 225017238

chr2 69880703 chr1 225033138

chr2 74268403 chr1 230003238

chr2 80374903 chr1 231853038

chr2 85069303 chr1 232724438
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chr2 86032203 chr1 235242332

chr2 86035003 chr1 238628732

chr2 87684103 chr2 1608760

chr2 88179403 chr2 6783703

chr2 96086803 chr2 8363603

chr2 96372003 chr2 10383003

chr2 96859803 chr2 10385003

chr2 101288664 chr2 10572203

chr2 102319264 chr2 11444903

chr2 102403564 chr2 11590903

chr2 102616164 chr2 12064003

chr2 110658064 chr2 12514703

chr2 112960890 chr2 12613303

chr2 113507690 chr2 12772903

chr2 113654590 chr2 15789203

chr2 126749490 chr2 16688903

chr2 128340390 chr2 17624403

chr2 134693988 chr2 18597203

chr2 144970788 chr2 20571203

chr2 145069488 chr2 20642003

chr2 149127888 chr2 20682903

chr2 158420488 chr2 23277003

chr2 166921189 chr2 23289703

chr2 168512089 chr2 25568403

chr2 173142089 chr2 26056203

chr2 178219389 chr2 26798903

chr2 178330189 chr2 26800903

chr2 183602989 chr2 27998103

chr2 198489289 chr2 28172403

chr2 202910889 chr2 28525503

chr2 202960289 chr2 28688803

chr2 216015289 chr2 29182503

chr2 217935089 chr2 29520403

chr2 218906589 chr2 30370303

chr2 220026389 chr2 36508903

chr2 220043189 chr2 36781603

chr2 223630389 chr2 39650903

chr2 231292289 chr2 41402303

chr2 233904289 chr2 45107103

chr2 236032689 chr2 46786903

chr2 236070589 chr2 46800803

chr2 239866133 chr2 46883703

chr2 241946333 chr2 47035703

chr3 4368950 chr2 50638203

chr3 4437750 chr2 54654803

chr3 4563050 chr2 55093303

chr3 5011150 chr2 56040703

chr3 5024250 chr2 58643303

chr3 5034450 chr2 59317703

chr3 12533550 chr2 65056703

chr3 12773550 chr2 66318203

chr3 14293950 chr2 67377203

chr3 14407550 chr2 67605803

chr3 14447450 chr2 67920603

chr3 14474350 chr2 69234503

chr3 15134450 chr2 74068403

chr3 23966750 chr2 74648103

chr3 24275450 chr2 75889803

chr3 24333750 chr2 84110503

chr3 33919950 chr2 84183503

chr3 33931750 chr2 85072803

chr3 38741350 chr2 85518703

chr3 44458550 chr2 85850803

chr3 47283250 chr2 91150803

chr3 47336650 chr2 95340303

chr3 47478050 chr2 95463403

chr3 52659750 chr2 95672203

chr3 58068250 chr2 96403703

chr3 63898550 chr2 96783403

chr3 65594750 chr2 98789364

chr3 67781350 chr2 101353264

chr3 69127750 chr2 102111364

chr3 69877550 chr2 113804390

chr3 69879350 chr2 115888290

chr3 69917250 chr2 118535890

chr3 71048350 chr2 118861790
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chr3 72225350 chr2 121245490

chr3 72442250 chr2 125448490

chr3 72464550 chr2 126186490

chr3 73124050 chr2 127574590

chr3 77210450 chr2 133248888

chr3 120758950 chr2 133722588

chr3 128125342 chr2 134360588

chr3 129546242 chr2 139841188

chr3 130218342 chr2 144205188

chr3 130227542 chr2 145020088

chr3 130647342 chr2 145134288

chr3 130802042 chr2 150310888

chr3 130858942 chr2 150663088

chr3 131586142 chr2 153072288

chr3 131914542 chr2 159410289

chr3 131990842 chr2 159612689

chr3 140337642 chr2 160674989

chr3 140462842 chr2 160785889

chr3 143828742 chr2 161087689

chr3 151369742 chr2 164317589

chr3 151577642 chr2 166174789

chr3 151928742 chr2 173266289

chr3 151934842 chr2 173622089

chr3 156226842 chr2 174162689

chr3 169288342 chr2 177818489

chr3 171332842 chr2 177846589

chr3 172009142 chr2 181296289

chr3 173713342 chr2 182832489

chr3 174058142 chr2 182897089

chr3 178537442 chr2 192549589

chr3 180537142 chr2 195981989

chr3 180638842 chr2 197681289

chr3 182119342 chr2 200703589

chr3 184754842 chr2 200890189

chr3 186375442 chr2 204156189

chr3 188197742 chr2 210449189

chr3 195290542 chr2 210511089

chr3 195402242 chr2 216103089

chr3 195446542 chr2 217126289

chr3 195448142 chr2 217169789

chr3 195456142 chr2 223326889

chr3 197303137 chr2 223846889

chr3 1.98E+08 chr2 224434389

chr3 1.98E+08 chr2 224817789

chr3 198022300 chr2 225483389

chr4 2839342 chr2 226044589

chr4 25941779 chr2 226689589

chr4 26397779 chr2 226829789

chr4 37921079 chr2 228033389

chr4 38536279 chr2 229855789

chr4 39648679 chr2 230061889

chr4 39903879 chr2 235548889

chr4 39969479 chr2 237312989

chr4 55043679 chr2 237320789

chr4 55146079 chr3 1594750

chr4 56296879 chr3 1848450

chr4 68815379 chr3 4077050

chr4 72011079 chr3 4776250

chr4 73638979 chr3 4844350

chr4 74793579 chr3 5041350

chr4 74986179 chr3 8646150

chr4 75406079 chr3 8868850

chr4 77339295 chr3 9972250

chr4 77355495 chr3 11215550

chr4 79782595 chr3 11781950

chr4 88166195 chr3 12196050

chr4 89738895 chr3 15334950

chr4 100976195 chr3 17985250

chr4 109253095 chr3 20334550

chr4 110128695 chr3 21995950

chr4 111306195 chr3 22396450

chr4 124564495 chr3 23280550

chr4 145029195 chr3 24252850

chr4 145270995 chr3 24469850

chr4 152084995 chr3 24982350

chr4 153803695 chr3 25539950
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chr4 154097995 chr3 25609450

chr4 186325695 chr3 27151450

chr4 187802295 chr3 27623850

chr5 10339250 chr3 28968250

chr5 10778950 chr3 31379850

chr5 34904050 chr3 36800550

chr5 38414550 chr3 37338150

chr5 53634050 chr3 39547550

chr5 55355050 chr3 41670050

chr5 60168650 chr3 44902050

chr5 61101650 chr3 45143450

chr5 65301150 chr3 45195150

chr5 67139750 chr3 52646150

chr5 67710550 chr3 54351050

chr5 67781750 chr3 54625850

chr5 67887250 chr3 56063650

chr5 75789850 chr3 56989950

chr5 76182550 chr3 57976050

chr5 77839850 chr3 62670050

chr5 78935350 chr3 63992350

chr5 79142350 chr3 65956950

chr5 79178050 chr3 67664150

chr5 95233550 chr3 67780950

chr5 124069950 chr3 69357850

chr5 131672050 chr3 69565850

chr5 134585050 chr3 71048450

chr5 134801450 chr3 71588550

chr5 141639950 chr3 72294050

chr5 141649950 chr3 73023950

chr5 145418750 chr3 78869350

chr5 148421350 chr3 88941850

chr5 148800850 chr3 90339950

chr5 149025950 chr3 100094850

chr5 149109050 chr3 100868550

chr5 149141150 chr3 101234450

chr5 149149750 chr3 104287350

chr5 149870850 chr3 106553550

chr5 150366850 chr3 113887350

chr5 150385050 chr3 114298550

chr5 154146550 chr3 114354050

chr5 156905550 chr3 118726150

chr5 159599950 chr3 121620350

chr5 169027050 chr3 124819750

chr5 169063050 chr3 124921250

chr5 169697550 chr3 125478350

chr5 172167250 chr3 125995150

chr5 173096550 chr3 126226350

chr5 173112950 chr3 126247650

chr5 173131850 chr3 126266650

chr5 173200250 chr3 127822842

chr5 176868350 chr3 128993942

chr5 177913650 chr3 129585142

chr5 178221750 chr3 130858942

chr6 7073750 chr3 133162642

chr6 7114150 chr3 133211742

chr6 10696750 chr3 133336942

chr6 13468350 chr3 138157342

chr6 13503850 chr3 142562442

chr6 14727150 chr3 149937042

chr6 14871750 chr3 150797442

chr6 15205650 chr3 151220842

chr6 15375150 chr3 151549542

chr6 15878250 chr3 153600542

chr6 16024550 chr3 154110642

chr6 16095550 chr3 154252542

chr6 17977450 chr3 156503842

chr6 20581550 chr3 158323242

chr6 21372450 chr3 166349442

chr6 26873850 chr3 168291542

chr6 28206050 chr3 170465042

chr6 29073450 chr3 171925342

chr6 29717550 chr3 172011342

chr6 29725250 chr3 173275842

chr6 30857450 chr3 173506842

chr6 31663050 chr3 179024442

chr6 34607050 chr3 179182542
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chr6 34935750 chr3 186738142

chr6 35435650 chr3 186997842

chr6 36833850 chr3 187414742

chr6 36926550 chr3 188264342

chr6 37137050 chr3 188410542

chr6 37206550 chr3 189157742

chr6 39264250 chr3 189547642

chr6 39281850 chr3 190507342

chr6 40454750 chr3 191277142

chr6 42121150 chr3 191735242

chr6 43875350 chr3 195258342

chr6 43946850 chr3 198577837

chr6 44087650 chr3 198677637

chr6 51033550 chr4 1899817

chr6 52589350 chr4 4269479

chr6 53288850 chr4 6444579

chr6 80235150 chr4 6579879

chr6 80377450 chr4 7410879

chr6 89013050 chr4 7976879

chr6 119508750 chr4 8013279

chr6 119619550 chr4 9643579

chr6 119688150 chr4 10140879

chr6 126207850 chr4 12463779

chr6 134424850 chr4 12523479

chr6 135555650 chr4 13905079

chr6 135688450 chr4 14016679

chr6 135710450 chr4 14247379

chr6 137524150 chr4 14844979

chr6 139881850 chr4 16297079

chr6 147274650 chr4 22650879

chr6 147278750 chr4 22994879

chr6 159176729 chr4 23194079

chr6 159196229 chr4 23738979

chr7 705392 chr4 23819679

chr7 878435 chr4 23821979

chr7 2630435 chr4 23953079

chr7 8140135 chr4 26094379

chr7 12746635 chr4 27584579

chr7 17212635 chr4 30438679

chr7 22409535 chr4 36070279

chr7 29679635 chr4 36795879

chr7 30765135 chr4 37740979

chr7 30926835 chr4 39933779

chr7 30943135 chr4 40212479

chr7 33005735 chr4 40816779

chr7 44984035 chr4 40874779

chr7 45033135 chr4 41264379

chr7 50997835 chr4 45643679

chr7 64042935 chr4 54637979

chr7 64661235 chr4 55054279

chr7 64981935 chr4 55592579

chr7 66282035 chr4 56881479

chr7 71888535 chr4 57625679

chr7 72211435 chr4 58064179

chr7 73345035 chr4 65332579

chr7 75063635 chr4 66200779

chr7 75876535 chr4 67103579

chr7 95703935 chr4 74061779

chr7 99625635 chr4 83656695

chr7 99810835 chr4 86637495

chr7 100526435 chr4 88601495

chr7 100532635 chr4 89710895

chr7 100586335 chr4 89947595

chr7 101163935 chr4 90579695

chr7 103409935 chr4 94323895

chr7 105627935 chr4 100940895

chr7 106444935 chr4 102178195

chr7 106485435 chr4 102351495

chr7 107664235 chr4 110128795

chr7 112572035 chr4 110254595

chr7 129437235 chr4 113134295

chr7 132331235 chr4 114776095

chr7 138770335 chr4 117874995

chr7 138938235 chr4 119574195

chr7 139264535 chr4 119966995

chr7 148031035 chr4 120178495
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chr7 150534935 chr4 121147895

chr7 150568835 chr4 121622495

chr7 150757135 chr4 124041095

chr7 150838335 chr4 125343695

chr7 151015635 chr4 128281895

chr8 2499550 chr4 129526395

chr8 2633250 chr4 129531295

chr8 17969950 chr4 129917895

chr8 22102050 chr4 134735295

chr8 23435650 chr4 139100495

chr8 23542550 chr4 140735795

chr8 27277450 chr4 141883995

chr8 27279150 chr4 142072995

chr8 27353250 chr4 142199295

chr8 53782250 chr4 143514195

chr8 91242150 chr4 150299995

chr8 101512950 chr4 151360295

chr8 101982150 chr4 153180095

chr8 102190850 chr4 157453395

chr8 102237750 chr4 160680095

chr8 103998650 chr4 166772395

chr8 104006950 chr4 167046895

chr8 106598250 chr4 169311495

chr8 123939250 chr4 169696895

chr8 124595250 chr4 169795995

chr8 124750950 chr4 174374195

chr8 125037950 chr4 176991795

chr8 125065750 chr4 177927895

chr8 125349750 chr4 178642795

chr8 125736250 chr4 183125495

chr8 125802250 chr4 184560395

chr8 125905650 chr4 184596395

chr8 125912350 chr4 186386995

chr8 126415550 chr4 186441895

chr8 126527450 chr4 186983495

chr8 128841650 chr5 14249850

chr8 128900750 chr5 14725150

chr8 128980650 chr5 15057350

chr8 129040350 chr5 15133450

chr8 129094750 chr5 17181050

chr8 129137650 chr5 17310650

chr8 129172250 chr5 24282250

chr8 129186750 chr5 24825750

chr8 129424050 chr5 29660550

chr8 129510050 chr5 31661750

chr8 130159850 chr5 32567750

chr8 130283350 chr5 35959950

chr8 130398450 chr5 36452650

chr8 130530650 chr5 38730350

chr8 130536550 chr5 41820450

chr8 130792750 chr5 43766550

chr8 131066650 chr5 52058150

chr8 134458150 chr5 52355750

chr8 134582050 chr5 52525150

chr8 143024450 chr5 53692350

chr9 70449816 chr5 54075250

chr9 70554716 chr5 56825850

chr9 72204116 chr5 57349750

chr9 76855416 chr5 58228850

chr9 94866916 chr5 58258650

chr9 95960016 chr5 58490250

chr9 96710616 chr5 58617850

chr9 98055616 chr5 58909150

chr9 99078916 chr5 59163150

chr9 99745216 chr5 60799650

chr9 99866816 chr5 64381250

chr9 99987916 chr5 64393650

chr9 100244716 chr5 64726550

chr9 100689616 chr5 65564850

chr9 100708116 chr5 65885450

chr9 100774716 chr5 71584150

chr9 100819416 chr5 83605050

chr9 100869416 chr5 83638550

chr9 101104816 chr5 86221450

chr9 109819616 chr5 88915050

chr9 109896416 chr5 90201850
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chr9 115381017 chr5 90250150

chr9 115687417 chr5 95681050

chr9 116287817 chr5 95692650

chr9 118222617 chr5 96011550

chr9 122739317 chr5 102145550

chr9 123087317 chr5 105837250

chr9 123890617 chr5 111701150

chr9 123981617 chr5 114824950

chr9 124024617 chr5 127351150

chr9 126063017 chr5 128441350

chr9 126702117 chr5 133867750

chr9 128932417 chr5 135255250

chr9 128969817 chr5 135380550

chr9 129342017 chr5 135421050

chr9 129363617 chr5 136442250

chr9 129917717 chr5 136673850

chr9 130487317 chr5 136834450

chr9 130993517 chr5 139002350

chr9 131398517 chr5 139113450

chr9 131665517 chr5 139671250

chr9 131681317 chr5 142242650

chr9 132401817 chr5 142468750

chr9 133502017 chr5 142603250

chr9 134644917 chr5 142902950

chr9 135007017 chr5 142921850

chr9 137539326 chr5 143694350

chr9 138262726 chr5 144842850

chr10 3796750 chr5 145189250

chr10 5976550 chr5 145284950

chr10 11253750 chr5 145900150

chr10 11787450 chr5 146082050

chr10 11792750 chr5 148151550

chr10 13786750 chr5 148322550

chr10 15394050 chr5 149472150

chr10 16552250 chr5 151044550

chr10 17500550 chr5 153716250

chr10 18086650 chr5 157881750

chr10 22808750 chr5 158287450

chr10 22945350 chr5 158355250

chr10 22949350 chr5 158823050

chr10 23090150 chr5 158903650

chr10 25036150 chr5 159209550

chr10 32089950 chr5 159224450

chr10 32235350 chr5 162607250

chr10 33278250 chr5 163563250

chr10 35046150 chr5 167059450

chr10 35080050 chr5 167306950

chr10 35764250 chr5 167532850

chr10 49340450 chr5 167629350

chr10 49368150 chr5 168016250

chr10 63224650 chr5 168480550

chr10 70762550 chr5 169455450

chr10 70887750 chr5 170960550

chr10 72047550 chr5 171314650

chr10 72695750 chr5 171996250

chr10 73067250 chr5 172155850

chr10 75338250 chr5 172220050

chr10 75481450 chr5 172246350

chr10 80613350 chr5 172926550

chr10 80617850 chr5 173154250

chr10 80819250 chr5 173162750

chr10 80898550 chr5 173707750

chr10 82022850 chr5 173743150

chr10 82248550 chr5 174053150

chr10 88573150 chr6 1209850

chr10 93339950 chr6 2448650

chr10 97253450 chr6 2557050

chr10 100207150 chr6 3690650

chr10 100215250 chr6 4304850

chr10 100527150 chr6 4978550

chr10 100670750 chr6 6623650

chr10 104531250 chr6 7648650

chr10 105324250 chr6 10418050

chr10 105331250 chr6 11229050

chr10 105364850 chr6 12710750

chr10 120999750 chr6 39256050
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chr10 121021250 chr6 39292450

chr10 126307150 chr6 41790050

chr10 126407650 chr6 44086850

chr10 134969359 chr6 98226050

chr11 5264650 chr6 106351950

chr11 5509950 chr6 109159950

chr11 10644550 chr6 112646350

chr11 12106150 chr6 113892850

chr11 12120950 chr6 117923450

chr11 12136550 chr6 122144850

chr11 15943450 chr6 124923350

chr11 15990850 chr6 126307050

chr11 18557350 chr6 130009150

chr11 33918550 chr6 132185950

chr11 34221050 chr6 132427050

chr11 34618150 chr6 133640250

chr11 34809550 chr6 136174850

chr11 36171050 chr6 138214350

chr11 44506650 chr6 139932550

chr11 44585850 chr6 143196050

chr11 46251450 chr6 145260550

chr11 47895450 chr6 146515450

chr11 56817450 chr6 149396050

chr11 60517550 chr6 149531250

chr11 62443850 chr6 149696850

chr11 64674650 chr6 150945929

chr11 66429050 chr6 153221229

chr11 68661950 chr6 155535329

chr11 71388350 chr6 159176729

chr11 72169450 chr6 167072429

chr11 72767050 chr6 167108129

chr11 72774750 chr7 1520635

chr11 73855550 chr7 1528035

chr11 74760950 chr7 1699035

chr11 74769450 chr7 3444135

chr11 74857550 chr7 5780635

chr11 74896150 chr7 6391535

chr11 74942950 chr7 8436835

chr11 76219350 chr7 10669735

chr11 76947050 chr7 11266535

chr11 78332850 chr7 12736535

chr11 85243450 chr7 12807935

chr11 85530150 chr7 14387635

chr11 85551350 chr7 20247135

chr11 85582750 chr7 20357635

chr11 94104550 chr7 20390635

chr11 94464750 chr7 20608335

chr11 94526050 chr7 21198835

chr11 95709050 chr7 22703235

chr11 112999450 chr7 23767135

chr11 113065350 chr7 24977835

chr11 113672850 chr7 27641635

chr11 116237050 chr7 28108435

chr11 117328750 chr7 28548235

chr11 124450250 chr7 30715635

chr12 624950 chr7 32048535

chr12 654150 chr7 33587835

chr12 2956650 chr7 33769535

chr12 2977750 chr7 33837835

chr12 3579450 chr7 33892835

chr12 4369450 chr7 34066935

chr12 6527250 chr7 34843835

chr12 7046650 chr7 36123335

chr12 12785950 chr7 36309335

chr12 13116550 chr7 37713735

chr12 13332950 chr7 37720035

chr12 19491850 chr7 42104535

chr12 23610850 chr7 43497435

chr12 31782250 chr7 44623435

chr12 44560750 chr7 46610635

chr12 45835750 chr7 47379335

chr12 48384850 chr7 48089335

chr12 48625250 chr7 55030835

chr12 48721850 chr7 68498635

chr12 48934550 chr7 79934235

chr12 50508050 chr7 80017835
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chr12 51316550 chr7 83509835

chr12 52033250 chr7 83804435

chr12 55777250 chr7 88070435

chr12 70710050 chr7 90092235

chr12 74402150 chr7 91152135

chr12 88244413 chr7 92217535

chr12 92039713 chr7 92292035

chr12 92339013 chr7 94776435

chr12 92557713 chr7 98660135

chr12 92702313 chr7 101163935

chr12 93084313 chr7 101703935

chr12 100746213 chr7 104391335

chr12 101337013 chr7 105851035

chr12 103195713 chr7 109961735

chr12 103443413 chr7 110625735

chr12 103641113 chr7 114002435

chr12 104799513 chr7 114011435

chr12 104812113 chr7 114899235

chr12 104873813 chr7 115604235

chr12 107009113 chr7 117086835

chr12 109021413 chr7 120161235

chr12 109289813 chr7 121466435

chr12 109502413 chr7 126127735

chr12 110282613 chr7 129797735

chr12 111759713 chr7 132848035

chr12 112679013 chr7 133700835

chr12 112704713 chr7 134169935

chr12 115108813 chr7 137109235

chr12 115205213 chr7 139406435

chr12 115309513 chr7 150838335

chr12 115533013 chr7 158591435

chr12 117547213 chr8 8146850

chr12 120453213 chr8 13172750

chr12 120671113 chr8 17738750

chr12 122113923 chr8 17798650

chr12 126129023 chr8 19509550

chr12 129887223 chr8 19979550

chr12 130003723 chr8 24873850

chr13 26648350 chr8 24909450

chr13 27634350 chr8 24936950

chr13 28104250 chr8 25117850

chr13 31881150 chr8 26484350

chr13 32270550 chr8 27589750

chr13 41036450 chr8 27870950

chr13 44668450 chr8 29469950

chr13 46114450 chr8 29710950

chr13 49374650 chr8 32781250

chr13 49861850 chr8 35123950

chr13 49898650 chr8 36634050

chr13 51160750 chr8 36858350

chr13 51429150 chr8 37605450

chr13 97957750 chr8 40335250

chr14 20837550 chr8 41123050

chr14 22336050 chr8 41162350

chr14 23812950 chr8 41301250

chr14 30577750 chr8 41484850

chr14 31549450 chr8 48488550

chr14 33450150 chr8 50375350

chr14 36705450 chr8 51120750

chr14 49625050 chr8 51130750

chr14 54292650 chr8 54334450

chr14 55334050 chr8 55527150

chr14 63930450 chr8 58623350

chr14 64378950 chr8 58827350

chr14 68265350 chr8 62667250

chr14 68284750 chr8 62830150

chr14 68296950 chr8 67582250

chr14 74421050 chr8 70674350

chr14 75465350 chr8 73110250

chr14 76660450 chr8 75370350

chr14 77447250 chr8 80863750

chr14 77451950 chr8 80908050

chr14 90918150 chr8 81509950

chr14 99581650 chr8 81991650

chr15 24954250 chr8 86923750

chr15 38177150 chr8 89286450
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K562 HeLa

Chromosome Position Chromosome Position

chr15 38322950 chr8 90182050

chr15 38926050 chr8 95301150

chr15 42899450 chr8 95323150

chr15 47004850 chr8 96072950

chr15 53347850 chr8 96279650

chr15 54862250 chr8 96784650

chr15 56565250 chr8 96866150

chr15 56631750 chr8 97526050

chr15 57615250 chr8 97613550

chr15 61453050 chr8 97873250

chr15 61920950 chr8 98873250

chr15 61965550 chr8 99807350

chr15 65104750 chr8 101574950

chr15 66285150 chr8 102199850

chr15 67069550 chr8 102274350

chr15 68171850 chr8 103837250

chr15 68182250 chr8 103870050

chr15 73663550 chr8 104006950

chr15 73713950 chr8 107860050

chr15 73839250 chr8 107939650

chr15 76339250 chr8 109657350

chr15 78027650 chr8 117810350

chr15 79154250 chr8 119093050

chr15 83337050 chr8 119181050

chr15 87571350 chr8 119877950

chr15 89814250 chr8 121486150

chr15 91166050 chr8 121838550

chr15 94463450 chr8 122612450

chr15 94736950 chr8 123936550

chr16 10624350 chr8 124774250

chr16 11073950 chr8 124801350

chr16 11627250 chr8 125295750

chr16 15169950 chr8 126313850

chr16 23798850 chr8 126341250

chr16 24913450 chr8 126676150

chr16 30327550 chr8 128560850

chr16 45983950 chr8 128648350

chr16 48844050 chr8 128841750

chr16 48872250 chr8 128933950

chr16 55737150 chr8 129051250

chr16 56283150 chr8 129208650

chr16 67363350 chr8 129265750

chr16 69317950 chr8 129605350

chr16 73681050 chr8 131345150

chr16 77993550 chr8 131602350

chr16 80060450 chr8 131824750

chr16 80105550 chr8 134129550

chr16 80134750 chr8 134131150

chr16 80216150 chr8 134457450

chr16 83344750 chr8 134755450

chr16 83808150 chr8 138228250

chr16 84154850 chr8 142123050

chr16 85849550 chr9 71276216

chr16 87061450 chr9 71915916

chr16 88047750 chr9 72688516

chr17 1468450 chr9 73484316

chr17 3738350 chr9 74384716

chr17 4686650 chr9 77244616

chr17 7321050 chr9 78622516

chr17 8264250 chr9 79750616

chr17 13351450 chr9 83353916

chr17 13436250 chr9 83648416

chr17 15369950 chr9 83653016

chr17 17809650 chr9 88358216

chr17 17913550 chr9 88418816

chr17 18661650 chr9 88501416

chr17 19060150 chr9 88626916

chr17 22929750 chr9 88789816

chr17 22985050 chr9 89075816

chr17 23344350 chr9 96451216

chr17 23877350 chr9 97882916

chr17 24217150 chr9 98414616

chr17 24511750 chr9 99331016

chr17 25064050 chr9 99987816

chr17 26822650 chr9 100584416

chr17 28180050 chr9 100607516
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K562 HeLa

Chromosome Position Chromosome Position

chr17 29278850 chr9 100609616

chr17 29294150 chr9 100663916

chr17 29299750 chr9 100711316

chr17 32041950 chr9 100785616

chr17 35523750 chr9 101889216

chr17 35847850 chr9 102377616

chr17 35942950 chr9 107723016

chr17 36930050 chr9 109371416

chr17 37820950 chr9 109896416

chr17 38156350 chr9 110073416

chr17 40924250 chr9 110280116

chr17 42197350 chr9 110411316

chr17 42243050 chr9 111378916

chr17 42321150 chr9 111830616

chr17 45311750 chr9 113762516

chr17 45484550 chr9 115759217

chr17 45587050 chr9 116083917

chr17 52912150 chr9 116287417

chr17 53798950 chr9 116521517

chr17 55522250 chr9 116696717

chr17 59662850 chr9 116907517

chr17 68269350 chr9 117094217

chr17 68806650 chr9 117610217

chr17 68826050 chr9 117781217

chr17 68982150 chr9 117810217

chr17 71150350 chr9 117898017

chr17 74217150 chr9 118021117

chr18 771850 chr9 118038817

chr18 957350 chr9 118072317

chr18 8978850 chr9 120121017

chr18 19374750 chr9 120335317

chr18 51180050 chr9 120764317

chr18 52450250 chr9 122284017

chr18 58255450 chr9 122486117

chr18 66110450 chr9 122526017

chr19 2099650 chr9 122739217

chr19 2674050 chr9 124186017

chr19 3084650 chr9 125141917

chr19 5041750 chr9 126193417

chr19 5894250 chr9 126581317

chr19 8181850 chr9 126621417

chr19 10372650 chr9 127315717

chr19 10907150 chr9 129524217

chr19 11511550 chr9 131209017

chr19 13821950 chr9 131275817

chr19 17923650 chr9 132647817

chr19 17941150 chr9 132860417

chr19 37811450 chr9 133533717

chr19 40157550 chr9 133598717

chr19 40611350 chr9 135346917

chr19 44529350 chr9 138025126

chr19 47629450 chr10 3457950

chr19 50294350 chr10 6994850

chr19 52294150 chr10 14167250

chr19 52378350 chr10 16726450

chr19 59125483 chr10 19426050

chr20 615450 chr10 22949350

chr20 1014950 chr10 33339050

chr20 1053950 chr10 33680350

chr20 1194650 chr10 35087350

chr20 1401350 chr10 46582850

chr20 2038250 chr10 48151350

chr20 2819150 chr10 51815050

chr20 13846050 chr10 59447050

chr20 23020550 chr10 61036750

chr20 29646750 chr10 61814450

chr20 29758150 chr10 62445850

chr20 29765750 chr10 65129650

chr20 30211150 chr10 71697150

chr20 30731950 chr10 72685750

chr20 30782150 chr10 73654050

chr20 31493650 chr10 79340150

chr20 32114950 chr10 80401950

chr20 32300650 chr10 80837950

chr20 32353350 chr10 80918450

chr20 34174650 chr10 81914150
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K562 HeLa

Chromosome Position Chromosome Position

chr20 35911750 chr10 82248650

chr20 36225350 chr10 85733850

chr20 36420250 chr10 89813150

chr20 36902950 chr10 90224450

chr20 39220750 chr10 90308150

chr20 41381250 chr10 90561050

chr20 42605150 chr10 91028250

chr20 42653750 chr10 93421550

chr20 43354750 chr10 95191950

chr20 43897750 chr10 95219550

chr20 44047450 chr10 95495950

chr20 44636450 chr10 95755950

chr20 46850150 chr10 96437150

chr20 46904650 chr10 99324750

chr20 46936850 chr10 100064950

chr20 47231050 chr10 112253450

chr20 47799650 chr10 112552950

chr20 47860950 chr10 112878850

chr20 47918650 chr10 113428150

chr20 48196450 chr10 113614450

chr20 48342450 chr10 113832050

chr20 48357050 chr10 114275250

chr20 48370350 chr10 115502250

chr20 48397950 chr10 120774750

chr20 48543350 chr10 132309150

chr20 48570750 chr11 8205650

chr20 48687150 chr11 8229350

chr20 48865150 chr11 9506750

chr20 49540250 chr11 10636550

chr20 51673850 chr11 12756150

chr20 51837850 chr11 12777850

chr20 54908350 chr11 16174250

chr20 60456150 chr11 19349150

chr21 15494050 chr11 19637950

chr21 29612150 chr11 23519250

chr21 29946350 chr11 27096050

chr21 30043650 chr11 27151250

chr21 34318150 chr11 27195750

chr21 34325750 chr11 29278350

chr21 34382850 chr11 33680950

chr21 35463150 chr11 33682750

chr21 37182950 chr11 33684750

chr21 37739150 chr11 33877550

chr21 37869350 chr11 34751950

chr21 39054150 chr11 35352250

chr21 39260750 chr11 37481650

chr21 42708850 chr11 40492550

chr21 42847950 chr11 43915550

chr21 43982150 chr11 47922050

chr21 45371250 chr11 47994750

chr22 17657896 chr11 48127950

chr22 20181896 chr11 56367050

chr22 20511196 chr11 56430250

chr22 20827496 chr11 56597250

chr22 23171696 chr11 56801250

chr22 23621096 chr11 57917450

chr22 24128496 chr11 59901650

chr22 25298896 chr11 60037250

chr22 25307596 chr11 61924650

chr22 25355296 chr11 62032450

chr22 25384396 chr11 63132850

chr22 25860396 chr11 63801150

chr22 26320696 chr11 64674650

chr22 27617596 chr11 65546050

chr22 28427496 chr11 66509450

chr22 28477496 chr11 66579050

chr22 28506696 chr11 68655550

chr22 28539796 chr11 69048850

chr22 29865496 chr11 71511850

chr22 30012196 chr11 72652850

chr22 30626396 chr11 72956150

chr22 30662896 chr11 73568250

chr22 31376696 chr11 73657750

chr22 33770496 chr11 74760950

chr22 34109696 chr11 77646150

chr22 34173196 chr11 78131050
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K562 HeLa

Chromosome Position Chromosome Position

chr22 34383696 chr11 80220350

chr22 34960796 chr11 80592250

chr22 35081996 chr11 80838250

chr22 35158196 chr11 83046050

chr22 35734696 chr11 83081350

chr22 35913396 chr11 83163250

chr22 35955196 chr11 84207450

chr22 36289296 chr11 85435650

chr22 36621496 chr11 85505450

chr22 36992396 chr11 85582650

chr22 37498696 chr11 85940950

chr22 37709596 chr11 86322450

chr22 37767996 chr11 87773550

chr22 38447696 chr11 87927950

chr22 38571196 chr11 91295150

chr22 38692696 chr11 94506250

chr22 40265996 chr11 94654150

chr22 40323696 chr11 95373550

chr22 40335296 chr11 95592350

chr22 40507396 chr11 95682450

chr22 41443196 chr11 95704250

chr22 43223777 chr11 98086350

chr22 46438595 chr11 98425050

chrX 153012097 chr11 99928450

chrY 24763013 chr11 109228350

Table ST4: Lists of genomic locations of core loci of MIR-enhancers

115



APPENDIX C

SUPPLEMENTARY INFORMATION FOR CHAPTER 4
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Figure C.1: Composite regulatory elements and their features in the human
genome. Functional genomic profiles of fold enrichments of individual histone mod-
ifications around (A) composite B+E elements and (B) simple B-E elements. (C,D)
Enrichment profiles and average fold enrichments for DNAse hypersensitive sites and
RNA-seq reads in-and-around boundary elements (blue bars).

116



Figure C.2: Composite regulatory elements and the KEGG chemokine sig-
naling pathway. Chemokine signaling pathway genes(yellow) located or having
close homologs proximal to B+E elements

117



0 1 2 3

B+E
B-E

Counts vs expected log2 fold enrichment  

1 2 3 0 

B+E 

B-E 

0

1
0

0

2
0

0

3
0

0

4
0

0

B
+

E
B

-E

Average expression 

100 200 300 0 400 

B+E 

B-E 

B 

0 1 2 3 4 5 6

B
+E

B
-E

 Hypergeometric test of enrichment -log10(P-value) 

2 4 5 6 0 

B+E 

B-E 

1 3 

A 

C 

Gβɣ 

K+ 
K+ 

ca++ 

G
P 
C 
R 

Gβɣ 

Ligand 

SK4 (Kca3.1) GIRK (Kir3.4) 

Voltage-gated potassium ion channels 

Symbol Description 

KCNJ1 Potassium inwardly-rectifying channel, subfamily J, member 1 

KCNJ12 Potassium inwardly-rectifying channel, subfamily J, member 12 

KCNJ18 Potassium inwardly-rectifying channel, subfamily J, member 18 

KCNJ5 Potassium inwardly-rectifying channel, subfamily J, member 5 

KCNJ8 Potassium inwardly-rectifying channel, subfamily J, member 8 

KCNMB1 Potassium large conductance calcium-activated channel, 

subfamily M, beta member 1 

KCNN4 Potassium intermediate/small conductance calcium-activated 

channel, subfamily N, member 4 

KCTD16 Potassium channel tetramerization domain-containing protein 16 

Figure C.3: Composite regulatory elements and Voltage-gated potassium
ion channels. (A) Voltage-gated K+ ion channel complex genes proximal to com-
posite (B+E) regulatory elements. (B) Enrichment of Voltage-gated K+ channel
complex genes for composite (B+E) versus canonical (B-E) boundary elements. (C)
Voltage-gated K+ ion channels predominantly associated with B+E elements. GIRK
(G protein-activated inwardly rectifying potassium channels) (dark blue) which per-
form inward potassium channel transportation and SK4 (Small conductance calcium-
activated potassium channels) (light blue) which perform outward potassium channel
transportation. Ligand (purple) binding to G protein-coupled receptor (gray) release
activated G-protein βγ-subunits (βγ)which activate the GIRK receptors (blue) to
draw in K+ ions. Ca2+ activates SK4 channels to export K+ ions.

118



Locations of composite cis-regulatory elements in CD4+ cell-line

Chromosome start end

chr1 33580601 33588601

chr1 38261328 38269328

chr1 44447760 44455760

chr1 59302201 59310201

chr1 65305401 65313401

chr1 66475960 66483960

chr1 66676201 66684201

chr1 94139601 94147601

chr1 121181495 121189495

chr1 150284601 150292601

chr1 166763606 166771606

chr1 173257001 173265001

chr1 173426206 173434206

chr1 179386801 179394801

chr1 180618447 180626447

chr1 184532886 184540886

chr1 197166801 197174801

chr1 201497960 201505960

chr1 206121354 206129354

chr1 223727847 223735847

chr1 229621728 229629728

chr1 230115201 230123201

chr1 237944401 237952401

chr2 427407 435407

chr2 19926413 19934413

chr2 37658196 37666196

chr2 62388207 62396207

chr2 111325007 111333007

chr2 131510106 131518106

chr2 132747495 132755495

chr2 136850401 136858401

chr2 158457315 158465315

chr2 166512869 166520869

chr2 178978506 178986506

chr2 183693706 183701706

chr2 196635317 196643317

chr2 219464715 219472715

chr3 3202001 3210001

chr3 13910938 13918938

chr3 16526601 16534601

chr3 40463646 40471646

chr3 56931344 56939344

chr3 60036601 60044601

chr3 71853001 71861001

chr3 131093704 131101703

chr3 151958001 151966001

chr3 154353046 154361046

chr3 178794201 178802201

chr3 187710960 187718960

chr4 40013201 40021201

chr4 89960601 89968601

chr4 90457807 90465807

chr4 100222801 100230801

chr4 115042601 115050601

chr5 42980530 42988530

chr5 66545001 66553001

chr5 67542330 67550330

chr5 67765401 67773401

chr5 112062930 112070930

chr5 139461730 139469730

chr5 143549027 143557027

chr5 154109626 154117626

chr5 169692103 169700103

chr5 176017914 176025914

chr6 7847607 7855607

chr6 11198029 11206029

chr6 27547601 27555601

chr6 27756425 27764425

chr6 138337601 138345601

chr6 139900075 139908075

chr6 159448201 159456201

chr6 170415429 170423429

chr7 3116325 3124325

chr7 7158377 7166377
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Chromosome start end

chr7 7260516 7268516

chr7 30736510 30744510

chr7 37447716 37455716

chr7 47989498 47997498

chr7 50482716 50490716

chr7 55600698 55608698

chr7 61600698 61608698

chr7 87683316 87691316

chr7 106285577 106293577

chr7 140891577 140899577

chr7 149847252 149855252

chr7 150078498 150086498

chr8 11345138 11353138

chr8 11765278 11773278

chr8 67992902 68000902

chr8 68468102 68476102

chr8 87418017 87426017

chr8 95066107 95074107

chr8 97418902 97426902

chr8 107839707 107847707

chr8 125734429 125742429

chr8 134649201 134657201

chr9 3517401 3525401

chr9 20306833 20314833

chr9 35098401 35106401

chr9 37065599 37073599

chr9 97816189 97824189

chr10 8492001 8500001

chr10 13428608 13436608

chr10 15285201 15293201

chr10 41694362 41702362

chr10 41716201 41724201

chr10 43266393 43274393

chr10 45230324 45238324

chr10 63323295 63331295

chr10 72000791 72008791

chr10 105215601 105223601

chr10 105329095 105337095

chr11 6718601 6726601

chr11 8662001 8670001

chr11 11127001 11135001

chr11 18685017 18693017

chr11 20335202 20343202

chr11 62406104 62414104

chr11 74965601 74973601

chr11 121023601 121031601

chr11 127423011 127431011

chr11 128215601 128223601

chr12 9907844 9915844

chr12 15951083 15959083

chr12 21716268 21724268

chr12 25423268 25431268

chr12 38302703 38310703

chr12 46876302 46884302

chr12 97416703 97424703

chr12 127872502 127880502

chr12 130653468 130661468

chr13 24090817 24098817

chr13 30241001 30249001

chr13 33008201 33016201

chr13 45789817 45797817

chr13 74792201 74800201

chr13 76801401 76809401

chr13 99108017 99116017

chr13 107715417 107723417

chr14 20640385 20648385

chr14 23975634 23983634

chr14 34953348 34961348

chr14 50365801 50373801

chr14 71982185 71990185

chr14 76653401 76661401

chr14 87557735 87565735

chr15 29561288 29569288

chr15 37697857 37705857

chr15 43272401 43280401

chr15 55778457 55786457

chr15 58921917 58929917
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Chromosome start end

chr15 66894081 66902081

chr15 68632288 68640288

chr16 49392433 49400433

chr16 73697890 73705890

chr16 80306675 80314675

chr17 21160917 21168917

chr17 44618100 44626100

chr17 60979849 60987849

chr18 45593018 45601018

chr19 32419473 32427473

chr19 38352673 38360673

chr19 48976520 48984520

chr19 56318473 56326473

chr19 56877980 56885980

chr20 4098217 4106217

chr20 37103648 37111648

chr20 44465040 44473040

chr20 51995401 52003401

chr21 14838201 14846201

chr21 25850593 25858593

chr22 30689417 30697417

chrY 11942613 11950613

chrY 57403058 57411058

Table ST5: Copmposite cis-regulatory elements in CD4+ cell-line
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SUPPLEMENTARY INFORMATION FOR CHAPTER 5
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Figure D.1: Gene expression-based percentage DNA methylation around
the TSS, gene-body and TTS.(A) Average percentage methylation levels of 100bp
windows spanning the TSS, gene-body and TTS, showing 3kb and 5kb upstream and
downstream of TSS respectively and 5kb and 3kb upstream and downstream of TTS
respectively. (B) Overall percentage methylation levels of groups of genes binned by
expression. Error bars are standard errors.
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Figure D.2: A non-monotonic relationship between gene-body DNA methy-
lation and gene expression. Shows overall percentage methylation of gene-bodies
(regions starting at 1kb downstream of the TSS and ending at 1kb upstream of the
TTS). Each data point represents the average methylation and corresponding average
expression of each bin of genes. (A) HeLa-S3. (B) H1-hESC
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Figure D.3: The bell shaped relationship between gene-body DNA methy-
lation and gene expression is independent of gene length. Methylation levels
for 5 gene expression bins at the TSS, gene-body and TTS for the 20% shortest (A)
and 20% longest (B) genes. Relationship between gene-body DNA methylation and
gene expression for 100 gene expression bins in the 20% shortest (C) and 20% longest
(D) genes. All analysis performed in the GM12878 cell-line.
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Figure D.4: Comparison between genic and intergenic DNA methylation levels in
HeLa-S3 and H1-hESC cell-lines, Error bars are standard errors
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Figure D.5: Relationship between gene expression and-.(A) Polymerase II den-
sity and (B) Density of DNaseI hypersensitive sites. Each data point represents the
average Pol2 or average DHSS and the corresponding average gene expression of a bin
of genes. Bins of genes are ordered by their average gene expression level. Pearson
correlation coefficient values (r) along with their significance values (P) are shown for
all pairwise regressions.
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