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Abstract

Background: Appraisal delay is the time a patient takes to consider a symptom as not only noticeable, but a sign
of illness. The study’s objective was to determine the association between appraisal delay in seeking tuberculosis
(TB) treatment and geographic distance measured by network travel (driving and pedestrian) time (in minutes) and
distance (Euclidean and self-reported) (in kilometers) and to identify other risk factors from selected covariates and
how they modify the core association between delay and distance.

Methods: This was part of a longitudinal cohort study known as the Kawempe Community Health Study based in
Kampala, Uganda. The study enrolled households from April 2002 to July 2012. Multivariable interval regression with
multiplicative heteroscedasticity was used to assess the impact of time and distance on delay. The delay interval
outcome was defined using a comprehensive set of 28 possible self-reported symptoms. The main independent
variables were network travel time (in minutes) and Euclidean distance (in kilometers). Other covariates were
organized according to the Andersen utilization conceptual framework.

Results: A total of 838 patients with both distance and delay data were included in the network analysis. Bivariate
analyses did not reveal a significant association of any distance metric with the delay outcome. However, adjusting
for patient characteristics and cavitary disease status, the multivariable model indicated that each minute of driving
time to the clinic significantly (p =0.02) and positively predicted 0.25 days' delay. At the median distance value of
47 min, this represented an additional delay of about 12 (95% ClI: [3, 21]) days to the mean of 40 days (95% ClI: [25,
56)). Increasing Euclidean distance significantly predicted (p =0.02) reduced variance in the delay outcome, thereby
increasing precision of the mean delay estimate. At the median Euclidean distance of 2.8 km, the variance in the
delay was reduced by more than 25%.

Conclusion: Of the four geographic distance measures, network travel driving time was a better and more robust
predictor of mean delay in this setting. Including network travel driving time with other risk factors may be
important in identifying populations especially vulnerable to delay.
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Background

Tuberculosis (TB) remains a global disease burden, espe-
cially for developing countries with high prevalence of
individuals co-infected with HIV. In 2015, Uganda had
an overall TB incidence rate of 202 per 100,000 and 66
per 100,000 among HIV-positive individuals. This rate
placed the country in the top twenty of disease burden
among all countries assessed for the double epidemics of
TB and HIV [1]. Long delay in starting treatment, espe-
cially among HIV-positive TB patients, has been associ-
ated with unfavorable treatment outcomes [2]. Previous
research has identified a common reason for delay: many
patients, including those co-infected, view initial symp-
toms as not serious [3, 4] and, in some cases, not even
reflective of TB [5].

Appraisal delay is the time a patient takes to consider a
symptom as not only noticeable, but a sign of illness [6].
The occurrence over time of more than one symptom is
an indicator to many patients of the presence of illness ne-
cessitating medical intervention. Multi-symptom appraisal
delay has been suggested when considering symptom
clusters in chronic disease [7]. In the case of TB, many
early symptoms are non-specific and therefore not imme-
diately perceived as signals of disease among individuals
who experience them [8]. However, the co-occurrence of
symptoms can influence patients’ disease perception. For
example, cough is often not recognized as possible TB
unless accompanied by more serious symptoms like
hemoptysis and weight loss [9, 10], after which patients
are more likely to seek health care [11]. Symptom dur-
ation is defined as the number of days from the first day
of onset of any symptom attributed to tuberculosis until
the first day of appropriate TB therapy [12]. This defin-
ition frequently encompasses illness, utilization and
system delay (see Fig. 1). Several studies of TB patients
have considered this definition when deriving a quantita-
tive (generally binary) measure of patient delay [13-16].
However, such a definition obscures the occurrence of
existing, albeit nonspecific, symptoms that preceded the
appraisal date (see Fig. 1).
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Our goal was to investigate whether distance to
healthcare facility influences the patient’s appraisal delay.
We did so by assessing the period before that used to
typically define delay in the TB literature, what we refer
to as the appraisal interval, a period when the illness is
perceived by the patient to be either non-existent and/or
non-threatening. Stock [17] examined the impact of dis-
tance to health facility on health care utilization in
sub-Saharan Africa. He discovered the association
depended upon illness perception; the more serious the
disease (i.e., TB), the less distance to facility impeded
utilization. However, this finding was based on data from
the 1970s, a pre-HIV/AIDS era in which the TB burden
was comparatively lower [18] and stigma not as great. In
recent decades, however, as technology has enhanced
our ability to categorize not only disease but also its se-
verity, research findings generally flip Stock’s assessment
[19]. We hypothesized that a greater distance to clinic
extends the appraisal interval, contributing to a longer
period of overall delay. If confirmed, it restores Stock’s
[17] initial finding that a patient’s perception of illness se-
verity is an important modifier of the relationship between
distance to health facility and treatment utilization.

To measure distance, we considered Euclidean dis-
tance and network travel time. Euclidean distance, owing
to its computational simplicity, has been commonly used
to measure distance and is calculated as the straight-line
distance between two geographic locations [20]. Net-
work travel time, derived from network analysis, uses
distance and speed to systematically create the fastest
(or least costly) travel time route between two geo-
graphic locations in a given road network [20]. Deriving
a more sophisticated measure of geographic distance
may allow a more accurate assessment of access to
health services, leading to more effective interventions.

Methods

Setting

The data from this study were obtained from a longitu-
dinal cohort study called the ‘Kawempe Community

First non-specific symptom

APPRAISAL DELAY

Recent symptom indicating TB illness

Treatment Initiation

ILLNESS +
UTILIZATION + SYSTEM
DELAY

Fig. 1 Appraisal delay is the time a person takes to evaluate a symptom as a sign of illness. lliness delay is the time the person takes from the
first sign of illness until deciding to seek professional medical care. Utilization delay is the time from the decision to seek care until the consult at
a health facility. System delay is the time from the first consultation to initiation of treatment. The red arrow indicates the appraisal date, at which
time the patient recognizes possible TB as the explanation for his or her symptoms




Fluegge et al. BMC Public Health (2018) 18:798

Health Study’ (KCHS), which enrolled households from
April 2002 to July 2012 in Kampala, Uganda [21]. Partici-
pants resided within Kawempe and contiguous divisions,
representative of other sub-Saharan low-resource settings.

Study participants

Eligible participants (index cases) were 18 years or older,
had an initial pulmonary TB diagnosis that was confirmed
based on growth of Mycobacterium tuberculosis in culture,
resided in Kawempe Division or contiguous divisions for at
least three consecutive months and provided HIV testing
and informed consent. Referral sources included direct
self-referral to the Ugandan National Tuberculosis and Lep-
rosy Program (NTLP), community sensitization outreach
programs, community/private clinics or some other source.

TB screening

Eligible patients received a baseline evaluation consisting
of a standard history, physical examination and a com-
prehensive clinical work-up, which included chest radi-
ography and acid-fast bacilli (AFB) sputum smear/
culture. Patients were asked questions by a trained nurse
or counselor, who then recorded the patient’s responses
onto the case report forms. Patients were instructed to
return to the clinic in 7 days to determine enrollment
into the study. Enrolled patients met the eligibility
criteria and had household members willing to partici-
pate. Individuals who were not enrolled in KCHS were
referred back to the NTLP for the completion of their
medical care.

Delay interval

The dependent variable was a patient’s appraisal delay. It
was constructed from two variables: the number of days
after the appearance of the most recent symptom and
the number of days from the appearance of the initial
symptom to the first point of contact with the NTLP. It
is an interval construction, where the number of days
after the most recent symptom is always less than or
equal to the number of days after the appearance of the
initial symptom. Equality indicates no appraisal delay.
Rather than delay only being defined as a specific num-
ber of days since the appearance of one symptom, this
approach allows us to model the appraisal delay as
occurring within a range, where appropriate, for patients
reporting multiple symptoms occurring over a period of
time. There were twenty-eight possible symptom
categories from which these intervals were constructed.
Numbers of days’ delay reported for each symptom were
self-reported by patients upon clinical intake.

Geographic distance
ArcGIS® Network Analyst was used to determine the
network travel time using a Kampala road network
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obtained from a local office [22]. OpenStreetMap was
used to supplement the road network for recruited
patients living outside the study catchment area [23].
Network travel time was computed from road distance
and speed, as the fastest (least costly) driving network
travel time in minutes from the patient home to the TB
clinic. Surrogate speeds were applied where speed limits
were not available and averaged actual peak time travel
speeds were used to reflect traffic congestion. Pedestrian
network travel time was computed similarly, using a
standard travel speed of three kilometers per hour.

ArcGIS® Proximity tool was used to compute the
Euclidean distance as a straight-line distance from the
patient home to the NTLP clinic. Detailed logistical
descriptions of the ArcGIS® software and extensions can
be found in this resource [24]. Figure 2 displays the
Kampala road map. Yellow and purple roads indicate
higher travel speeds. The yellow square identifies the
NTLP clinic. The most variable speeds in the map are
those surrounding this clinic.

Covariates

Twenty-five covariates were selected to assess the rela-
tionship of delay and geographic distance as well as to
identify potential risk factors. The covariates were orga-
nized according to the Andersen utilization conceptual
framework [25]:

o predisposing characteristics (age, sex, tribe, religion,
marital status); enabling (patient education, social
support: family size, type of residence such as
Muzigo (i.e., typical housing structure for slum area)
or a multi-family housing unit [26]);

e perceived needs: indicator variable describing if
cough was the most recent reported symptom, total
number of symptoms reported and whether the
patient or any other household members were
previously treated for TB;

o evaluated needs: AFB smear, chest cavities, physical
examination findings (body mass index (BMI) &
BCG vaccination scar), Karnofsky performance
score, modified Bandim TBscore for disease severity,
comorbidities: HIV status;

o and personal health practices: smoking, drinking
alcohol

The Karnofsky score was segmented by a threshold
score of 80, which distinguishes between patients who
are able to carry on normal activity and to work, and
those who are unable to work [27]. The Bandim TB
score was included to assess disease severity [27]. The
derivation, use and analysis of a modified version of this
score are presented in the Additional file 1.
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Fig. 2 Dark green paths identify roads. Travel speeds were highlighted around areas including study households (not identified). In order of
speeds, highlighted yellow and purple paths indicate higher travel speeds. The yellow square identifies the NTLP clinic. The most variable road
speeds in the map are those surrounding this clinic. The Kampala, Uganda digitized base map was sourced from the Uganda Bureau of Statistics
in 2009 and displayed in ArcGIS [22]. OpenStreetMap was used to supplement road travel speeds in areas not covered by the digitized maps [23]
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Data analysis

Descriptive analyses comprised continuous variables
expressed as median and interquartile range (IQR). Cat-
egorical variables were expressed in proportions. Chi-s-
quare and f-tests were used to evaluate potential
differences in enabling, predisposing, evaluated and
self-perceived needs and personal health behaviors as well
as the delay endpoints between patients with and without
GPS data. We used interval regression to assess the asso-
ciation between distance and delay. We distinguished
between mean and variance effects on the delay outcome
by estimating an interval regression model with multi-
plicative heteroscedasticity [28]. Estimating the variance
allows us to assess how the boundaries of the delay inter-
val change in relation to the mean. The mean delay and
the log of the variance in delay were each specified as
linear functions of the regressors. Estimation was by max-
imum likelihood (ML) with robust standard errors.

The interval regression model is specified as follows.
We let y = X5 + € be the interval regression model, where
y represents the unobserved continuous delay outcome
and the X indicates a matrix of our covariates of interest.
The model assumes ¢ ~ N (0, ¢°). For observations jeC,
we observe true y;, that is, point data for individual .
These uncensored delays occur either when patients re-
port multiple symptoms with the same number of days’
duration or only one symptom. In the latter case, the
most recent symptom is the initial symptom, render-
ing the interval to be point data. Delays that are
represented by these point data suggest no appraisal
delay. Observations j € I are intervals. We know that
the unobserved y; is in the interval [y;; y;]. These
observations include patients reporting multiple
symptoms with different days’ duration associated
with each one. The model assumes no right- or
left-censoring.
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The likelihood is proportional to the probability of ob-
serving the data, treating the parameters of the distribu-
tion as variables and the data as fixed. The goal of ML
methods is to find the estimate(s) of the parameter(s)
that maximizes the probability of observing the data we
have. The log-likelihood of the interval regression model
is specified as

2
_ 1 y]-—x/)’ 2
InL = 5 Z{ < e ) + log2mo

o5 wfol) o)

where O is the standard cumulative normal.

Three interval regression models using the log-likelihood
were analyzed: an intercept-only model, a multivariable
(MV) model without multiplicative heteroscedasticity and a
final multivariable model where the log of the variance was
specified as linear functions of the regressors (MV + MH).
The ML parameters (f5, In(0)) for each model were com-
pared. Additionally, we used these parameters to calculate
(1) the expected delay for each individual, conditional on it
being within the defined interval, and (2) the probability
that the expected delay would fall in the observed interval.
We posited that the final MV +MH model would
maximize the mean probability of observing our data. A
test of equivalence was used to assess the expected delay
and probabilities of the MV + MH model [29].

To determine the set of covariates included in the final
multivariable model, a series of bivariate interval regres-
sion models were fit. Significant variables (at p <0.10)
from these models were included in the multivariable
model. All distance variables were included in the model
regardless of the statistical significance of their associ-
ation with the delay outcome. The same variable set was
used to specify the conditional variance of the delay out-
come. Crude and adjusted marginal effects on delay and
95% confidence intervals (CI) were reported. An alpha
of 0.05 was used for the threshold of statistical sig-
nificance of primary distance predictors in the
multivariable models. Probit plotting (e.g., using nor-
mal Q-Q plot) was used to assess normality of the
residuals [30]. The statistical analyses were performed
using Stata, the Statistics/Data Analysis statistical
package, version 13 [31].

Ethical approval for the research was provided to the
Tuberculosis Research Unit (TBRU) based in Case
Western Reserve University and received from Institu-
tional Review Boards at University Hospitals of Cleve-
land in Cleveland Ohio, USA and Uganda Council for
Science and Technology in Kampala, Uganda. Partici-
pant consent was written.
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Results

Overall description of study participants

Figure 3 identifies the enrollment and eligibility flow for
the Kawempe cohort study. A total of 878 newly diag-
nosed TB cases was enrolled during the period of April
2002 to July 2012. All but two of these eligible cases
(who were missing all symptom reports) were retained
in defining the interval delay outcome (see below). Of
the 878 individuals, thirty-eight (4%) had either errone-
ous or missing GPS data. This resulted in 838 eligible
TB cases in the network analysis. Among the interval
patient delays, none were left- or right-censored, thereby
meeting the model assumption. There were 708 patients
with interval delays, producing an appraisal delay rate of
84%. Among the 838 patients with GPS data, 130 had
uncensored delay with average number of 5.6 symptoms
(SD = 2.3, maximum of 14) and 708 had interval delay
with 7.7 symptoms (SD = 2.2, maximum of 17), a statisti-
cally significant difference (two-sample ¢-statistic = 10.5,
p<0.01). The only variables that were significantly
different between the patient groups with (n =838) and
without (n = 38) GPS data were: marital status (p = 0.03),
religion (p = 0.01), and culture result (p = 0.04).

The distributions of interval delay by symptom cat-
egory for 876 patients are listed in Table 1. The data for
cough were most complete: 875 patients (99.8%) had this
symptom, with 460 patients (53%) reporting a median
cough duration of exactly 90 days. There were seven
other symptom categories in which 50% or more of all
patients reported experiencing. All of these additional
categories had a median delay of 60 days. They included
loss of appetite, chest pain, fever, production of sputum,
purulent sputum, nights sweats and weight loss. For
each of these categories, 20% or less of all patients iden-
tifying the symptom category reported a duration of the
median length of 60 days. The median minimum delay
for 838 patients used in the network analysis was 30 days
(mean of 36 days with standard deviation of 40.9 and
range of 0 to 365 days). The median maximum delay
was 90 days (mean of 122 days with standard deviation
of 122.9 and range of 10 to 999 days).

Among the predisposing factors, TB patients were
mostly young adults (median age of 27 years), unmarried
(54%), men (53%) who were either Roman Catholic or
Anglican (61%). The predominant tribe in this setting
was the Buganda tribe (56%). Among the enabling
factors, patients reported a median level of 11 years of
education. Overall, households consisted of a median of
three members, with 2.5 members per room. Most
patients lived in Muzigos (70%) with poor ventilation.
Most of the patients neither smoked (81%) nor con-
sumed alcohol (77%).

Among the patient’s perceived need factors, 18% of
patients self-reported cough being the most recent
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=
| Reasons for non-enrollment (n
| =452):

E 172 did not have pulmonary TB
110 had previous TB
I

'

'

'

'

'

113 refused participation
147 Did not meet criteria
10 Other

__________________________

i 38 of eligible HHs (4%) had
! either erroneous or missing
! GPS data

I

weakly positive culture.

Index cases screened

N=1,434

Index cases with positive
screening

N=982

Index cases with
eligibility confirmed*

N=878

i HHs eligible for network e EEEEEEEEEEEEEEEERPPTEPEE
’ analysis

N=840

* Enrolled cases included 6 index patients that were excluded in other studies of the Kawempe cohort (e.g., Stein et al., 2018), but
retained in the current study because their houses were geocoded. These included 3 patients without HH contacts and 3 with

Fig. 3 There were 984 households enrolled in the study. Of these, 878 (89%) were eligible for analysis. Of these eligible households, 840 (96%)
had global positioning system waypoints available, making them eligible for inclusion in the network analysis sample

Reasons for ineligibility (n = 104):

3 index cases withdrew

49 cases grew other
Mycobacterium species in culture
or culture negative or failure to
report past TB

12 index cases moved out of area or
died prior to baseline visit

40 where no household contacts
consented

symptom. This result was significantly associated with
delay of more than 2 weeks (beta = 15.5, p =0.001). The
median number of symptoms was seven per patient.
However, this variable was not significantly associated
with delay (beta=-0.68, p=0.20). Only two patients
reported being previously treated for TB; this variable
was therefore removed from inclusion in the regression
models. The need factors evaluated by the doctor identi-
fied a majority of patients with advanced disease. Most
patients had a tuberculin skin test (TST) induration
greater than 10 mm (85%). A majority of the patients
had evident chest disease, including 63% with cavitary
TB disease; 88% with moderate to far advanced TB
disease extent on chest radiographs. AFB sputum smear
results were positive for 93% of the patients, with 86%
producing confluent growth to innumerable colonies on
media. Thirty percent of the patients were HIV-positive.
The median Bandim TBscore was 6, with a maximum
score of 12.

Factors associated with interval delay in bivariate models
(Table 2)

All distance variables predicted increased delay in the
bivariate models; however, none reached statistical
significance. Each minute of network driving travel time
was associated with 0.13 (standard error (SE)=0.09)
days’ delay. At median values, this represented 6.2 total
days’ delay. Each kilometer of Euclidean (self-reported)
distance measure was associated with 0.78 (SE =1.03)
days’ delay. At median values, this represented 2.2 total
days’ delay.

Among the predisposing factors, only older age signifi-
cantly predicted increased delay: being 1 year older pre-
dicted 0.60 days’ delay (95% confidence interval (CI):
0.03, 1.12). Of the enabling factors, more years of educa-
tion marginally predicted reduced days’ delay: 1 year of
additional education was associated with reduction in
delay by 0.75 days (95% CI: -1.5, 0.02). Among the need
factors from the patient’s perspective, cough being the
most recent symptom (i.e., cough duration was equiva-
lent to the minimum delay value of the appraisal inter-
val) was associated with more than 2 weeks’ delay
(15.5 days) (95% CI: 6, 25). This covariate was the most
significant predictor of delay (p =0.001) among the full
set of covariates considered. Other need factors evalu-
ated by a doctor also predicted increased number of
days’ delay. Patients with cavitary disease experienced
almost 10 days’ delay (p = 0.003), especially patients with
far advanced disease (p=0.03) and high AFB Grade
smear (p=0.01). No personal behaviors were signifi-
cantly associated with delay. A higher Bandim TBscore
was associated with increased delay, although the result
was not statistically significant (beta = 0.31, p =0.73). We
further consider analysis of the TBscore, including its
significant association with the delay variance, in the
Additional file 1.

Factors associated with interval delay in multivariable
model (Table 3)

The final multivariable model included a sample of 798
observations, consisting of 123 uncensored delays and
675 interval observations, representing 89 and 91% of
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Table 1 Symptoms and associated patient self-reported delays
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Symptom Number of Median Number of patients reporting symptom at min/median/max number of days
P A T
symptom (%) days with

symptom

Loss of appetite 546 (62) 60 (3, 365) 1 107 7

Cough 875 (99.8) 90 (0, 999) 1 460 2

Chest pain 596 (68) 60 (1, 730) 1 99 2

Dyspnea 381 (43) 40 (0, 999) 1 17 1

Fever 670 (76) 60 (1, 730) 1 101 2

Hemoptysis 87 (10) 5(1, 66) 13 6 1

Malaise 200 (23) 30 (3, 360) 1 74 1

Produce sputum 858 (98) 60 (2, 999) 2 153 1

Purulent sputum 665 (76) 60 (2, 730) 1 122 1

Rigors 48 (5) 29 (3, 120) 1 1 4

Night sweats 544 (62) 60 (1, 730) 3 97 1

Weight loss 723 (82) 60 (2, 730) 1 142 1

Abdominal pain 26 (5) 30 (1, 365) 2 8 2

Adenopathy 9(1) 30 (7, 140) 2 2 1

Arthralgia 72 (8) 30 (2, 365) 1 28 1

Back pain 23 (3) 30 (7, 365) 3 6 1

Bone pain 8 (1) 45 (9, 250) 1 0 1

Confusion 0 (0)

Diarrhea 32 (6) 14(1,112) 1 8 1

Dizziness 7(1) 30 (1, 30) 1 5 5

Headache 34 (4) 30 (1, 150) 2 12 1

Myalgia 27 (3) 30 (3, 365) 1 6 2

Nausea 4(0.7) 14 (4, 60) 1 2 1

Pruritis 8 (1) 33.5 (7, 360) 4 0 1

Rash 6 (1) 30 (7, 360) 2 2 1

Vision loss 00

Vomiting 25 (4) 20 (1, 180) 1 1 1

Other 25 (4) 425 (3, 720) 1 0 1

the available patient data on delay. Nine covariates
deemed significant (p < 0.10) from the bivariate results
were included in the MV + MH model. These included
patient age, years of education, cough being the most
recent symptom, BMI, HIV status, cavitary disease, cavi-
tary disease extent, AFB grade smear and culture result.
For interpretation of the model intercept, age and BMI
were mean-centered. In this adjusted model, there was a
more pronounced and greater effect of distance on
delay. Driving network travel time significantly predicted
increased delay (p =0.02): each minute of driving time
was associated with 0.25 days’ delay (95% CI: [0.07,
0.44]). At median values, this represented 11.8 days’
delay. Thus, adjusting for other patient and clinical fac-
tors, the median driving time added 12 (95% CI: [3, 21])

days to the average patient delay of 40 days (95% CI: [25,
56]), an increase of 30%. However, increasing Euclidean
distance was associated with reduced variability in the
delay interval (beta=-0.32, p=0.02). Adjusting for the
same factors, at the median Euclidean distance of
2.8 km, the variance in the delay was reduced by more
than 25% (beta x median distance / constant). These
results demonstrate that while driving time influenced
changes in the mean delay, Euclidean distance was asso-
ciated with precision of the delay interval length.

Overall, the log-likelihood for the fully specified MV +
MH model (- 1318) suggested a better fit, compared to —
1426 for the MV model and — 1608 for the intercept-only
model. Sensitivity checks revealed the robustness of these
main effects. The statistical significance of the driving time
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Table 2 Bivariate associations with delay interval (in days)

Treatment-seeking characteristic Overall median or frequency (%) (N =878) Marginal change in number of days’ delay (95% Cl) p

Geographic distance

Pedestrian network travel time (minutes) (N = 840)

Median (IQR) [Min/Max] 74.6 (56.0) [7.4/236.0] 0.05 (-0.05, 0.15) 035
Driving network travel time (minutes) (N = 840)

Median (IQR) [Min/Max] 473 (25.9) [5.7/158.5] 0.13 (=0.05, 0.30) 0.16
Euclidean distance (kilometers) (N = 840)

Median (IQR) [Min/Max] 2.78 (2.36) [0.24/10.78] 0.78 (=1.24, 2.80) 045
Self-reported distance (N =865) (kilometers)

Median (IQR) [Min/Max] 5 (5) [0/20] 0.87 (-0.18,1.92) 0.10

Predisposing factors

Sex

Male 464 (53%) —3.32 (=965, 3.0) 030

Female 414 (47%) Ref

Age (in years)

Median (IQR) [Min/Max] 27 (12) [18/80] 060 (0.03, 1.12) 0.04
Married
Yes 406 (46%) 3.04 (-3.34,943) 0.35
No 472 (54%) Ref
Tribe
Buganda 496 (56%) —-1.86 (—-8.21, 449) 0.57
Other 382 (44%) Ref
Religion
Roman Catholic (RC) 273 (31%) —3.26 (=132, 6.63) 0.52
Anglican 263 (30%) 7.10 (4.2, 18.5) 022
Muslim 203 (23%) -0.82 (-=11.1,9.5) 0.88
Other 138 (16%) Ref

Enabling Factors

Education (years) (N =877)

Median (IQR) [Min/Max] 11.(7) 117) —-0.75 (=1.51, 0.02) 0.06
Household size (N =874)

Median (IQR) [Min/Max] 3 (3) [1/30] —0.05 (- 1.76, 1.66) 0.96
Person/room

Median (IQR) [Min/Max] 25 (243) [0/14] —-0.18 (=2.05, 1.69) 0.85
Windows/room

Median (IQR) [Min/Max] 0.8 (1) [0/2.5] —0.35 (=647, 5.78) 091
Type of residence

Muzigo 613 (70%) —143 (=859, 5.71) 0.70

Other 265 (30%) Ref

Need factors
Perceived by patient
Cough most recent symptom
Yes 158 (18%) 1549 (6, 25) 0.001
No 720 (82%) Ref
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Table 2 Bivariate associations with delay interval (in days) (Continued)
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Treatment-seeking characteristic Overall median or frequency (%) (N =878) Marginal change in number of days’ delay (95% Cl) p
Total number of symptoms (N = 874)
Median (IQR) [Min/Max] 7 (3) [0/23] -0.68 (-1.71,0.35) 0.20
Need factors
Evaluated by doctor
Modified Bandim TB score
Median (IQR) [Min/Max] 6 (2) [0/12] 031 (=140, 2.01) 0.73
TST Cut-off 10 mm
Positive 644 (85%) —4.03 (=163, 8.27) 052
Negative 111 (15%) Ref
BCG Vaccination
Yes 492 (65%) 252 (=2.51,7.56) 033
No 264 (35%) Ref
BMI (N =876)
Median (IQR) [Min/Max] 19 (3.2) [12.4/35.5] —0.83 (-1.83,0.16) 0.10
HIV Status
Positive 265 (30%) —5.65 (-12.2,0.86) 0.09
Negative 612 (70%) Ref
Index Karnofsky
280 798 (91%) 0.11 (-0.38, 0.60) 0.66
<80 80 (9%) Ref
Cavitary disease
Yes 539 (63%) 9.50 (3.30, 15.70) 0.003
No 321 (37%) Ref
Cavitary disease extent®
Far advanced 455 (53%) 1047 (1.04, 19.90) 0.03
Mod advanced 304 (35%) 045 (943, 10.33) 093
Normal or Minimal 101 (14%) Ref
AFB Grade smear
3+ 713 (81%) 1112 (23,19.94) 0.01
2+ 106 (12%) 12.29 (=24, 27)) 0.10
0-1+ 59 (7%) Ref
Culture result
50+ colonies 588 (68%) 9.03 (-0.3, 1835) 0.06
30-49 colonies 155 (18%) 9.17 (2.5, 20.84) 0.12
0-29 colonies 128 (15%) Ref
Personal health behaviors
Smoking
Current or former smoker 164 (19%) 529 (-1.3,11.85) 0.12
Never smoke 713 (81%) Ref
Alcohol intake
Yes 204 (23%) —4.06 (—-10.6, 2.44) 0.22
No 673 (77%) Ref

Ref Reference category, TST tuberculin skin test

“Reference group comprised normal (N = 28) and minimal (N = 73) cavitary disease
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Table 3 Multivariable associations with appraisal delay interval (in days) using multiplicative heteroscedasticity

Treatment-seeking characteristic

Change in # of days’ delay (95% Cl) p

Change in variance of days’ delay (95% Cl) p

Geographic distance

—0.05 (=041, 0.32)
0.25 (0.05, 047)
—2.54 (=103, 5.24)
095 (- 0.13, 2.02)

Pedestrian network travel time (min)

Driving network travel time (min)

Euclidean distance (km)

Self-reported distance (km)
Predisposing factors

Age (in years) 0.64 (0.31, 0.98)

Enabling Factors

Education (years) —0.50 (-1.16, 0.16)
Need factors
Perceived by patient
Cough most recent symptom
Yes 13.35 (467, 22.02)
No Ref
Need factors
Evaluated by doctor
BMI —0.54 (-1.36, 0.28)
HIV Status
Positive —-0.70 (7.2, 5.83)
Negative Ref

Cavitary disease

Yes
No
Cavitary disease extent®
Far advanced
Moderately advanced
Normal or Minimal
AFB Grade smear
3+=3
2+=2
0-1+=1
Culture result
50+ colonies

30-49 colonies

8.99 (2.20, 15.79)
Ref

3.29 (-8.90, 15.48)
—5.13 (-16.03, 5.79)
Ref

—1.0 (-=1243,1045)
6.21 (—7.6, 20.03)
Ref

1249 (5.01, 19.97)
13.63 (4.17, 23.10)

0-29 colonies Ref

Constant 39.5 (25.3, 55.7)

0.79 0.009 (—0.002, 0.02) 0.10

0.02 0.003 (-=0.002, 0.01) 0.25

0.52 -0.32 (= 0.56, — 0.06) 0.02

0.09 0.01 (- 0.01, 0.04) 0.30

<.001 0.02 (0.01, 0.03) <.001

0.14 —0.02 (- 0.03, 0.002) 0.08

0.003 0.50 (0.29, 0.70) <0.001
Ref

0.20 —0.03 (= 0.05, —.004) 0.02

0.83 0.05 (-0.16, 0.26) 0.66
Ref

0.009 0.31 (0.09, 0.53) 0.006
Ref

0.60 —0.23 (=055, 0.11) 0.18

0.36 —0.18 (- 049, 0.12) 0.23
Ref

0.86 —0.05 (- 048, 0.38) 083

0.38 049 (0.002, 0.98) 0.05
Ref

0.001 041(0.16, 0.66) 0.002

0.005 0.32 (0.003, 0.62) 0.05
Ref

<001 3.17 (267, 3.66) <0.001

“Reference group comprised normal (N =28) and minimal (N =73) cavitary disease

Ref Reference category

predictor was attenuated (p = 0.07) and the marginal effect
was reduced by more than 20% when not also modeling
the delay variance. This supports the importance of ac-
counting for the variability associated with delay in urban
areas with locations of particularly congested traffic zones.
Second, in validating assumptions of the MV +MH
model, we observed non-normality of the residuals using

a normal Q-Q plot. To inspect the impact of this violation,
we re-analyzed the model including only observations
whose residuals were within the interquartile range of the
distribution (N = 399). This check revealed a 50% increase
in the effect estimate for driving time (beta=0.38, p <
0.001). Furthermore, self-reported distance in kilometers
was also now statistically significant (beta = 1.1, p = 0.003).
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These results revealed that driving time as a distance
metric was more robust to model misspecification than
other measures.

Among the other covariates included in the multivari-
able model, several significantly (p < 0.05) and positively
tracked both mean delay and the variability in the inter-
val: increasing patient age, cough being the most recent
symptom reported, presence of cavitary disease, and
higher culture result. Using the median value, continu-
ous age was associated with 17.3 days’ delay, cough
being the most recent symptom indicated 13.4 days’
delay, and having advanced disease contributed between
nine (for cavitary disease) to 12.5 (for culture result of
50+ colonies) days’ delay. Collectively assessed, older
and sicker patients accumulated the greatest appraisal
delay. Controlling for these patient and disease charac-
teristics, driving time distance significantly modified the
mean delay outcome.

Figure 4 shows the post-estimation results of the inter-
val regression models using ML for all 675 interval delay
observations. The expected delay (in days) was calcu-
lated conditional on the value being within the interval
identified for each individual. The mean probability that
this expected value was contained in the interval
observed in the data is also shown. For the intercept
model, the MV model and the MV + MH model, the
respective estimates were as follows: 59.5 days with
probability 0.46, 59 days with probability 0.47 and
56.6 days with probability 0.52.

A test of equivalence was performed on the mean
estimates from the MV and MV + MH models. To define
the equivalence margins, we used the standard devia-
tions of the estimate differences between the intercept
and MV models (0.05 for probability and 4 days in delay).
Results revealed equivalence in the delay outcome, but
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not the probability. The ML estimates that achieved the
0.52 probability are contained in Table 3. Modeling the
variance of the delay outcome therefore significantly
increased the probability that we observed our data.

Discussion

Our findings suggest that adjusting for TB disease sever-
ity, patients with longer driving times to access TB
treatment may be more vulnerable to delay and its con-
comitant morbidity. However, this association was not
present when omitting these disease status characteris-
tics in the bivariate model. That is, distance in driving
time was not statistically associated with the appraisal
delay outcome among our cohort of patients, most of
whom had advanced disease. This result conforms to
Stock’s [19] assessment on delay and distance, suggesting
patients with less serious disease are prone to delay as a
result of the barriers associated with driving time.

Our patients present a particular public health chal-
lenge as longer delay results in continued MTB exposure
and transmission. Given the available GIS software, TB
control programs can identify populations experiencing
greater travel times (which may not reflect distance trav-
eled) and provide the appropriate interventions in order
to reduce the travel burden. Our novel application of
interval regression with multiplicative heteroscedasticity
provides an estimate of the effect of the main predictors
on mean delay, while also taking into account the in-
creased variability associated with shorter kilometer dis-
tance from the clinic.

A number of previous studies [9, 32—34] have identified
geographic distance as an important factor for delay.
However, most of the studies perform a cursory assessment
of distance (e.g., urban versus rural or only self-reported
travel time or distance). This study increases the rigor and
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sophistication by using both network travel time and
Euclidean distance to characterize a more complete picture
of the impact of distance on delay. The Euclidean distance
measure alone, though computationally simple, may be
limited in settings of high traffic congestion [35]. Indeed, in
this study where traffic congestion is common in areas
close to the clinic, we found that shorter Euclidean distance
predicted increased variability of delay in the multivariable
analyses (likely dependent on the designated road speeds
intended to accommodate such congestion). In contrast,
increasing network travel driving time was associated with
increased patient delay. These findings were consistent with
previous research that closely examined geographic
distance and delay [36]. Among the predisposing factors
examined in this study, increasing patient age (but not sex)
were significant risk factors for delay, mostly aligning with
existing literature [33, 37, 38]. Although more years of edu-
cation were protective against delay, our results were not
significant, matching others who found no relationship
between education and delay [34, 39]. However, almost all
patients reported cough and the recentness of this symp-
tom was positively and significantly associated with delay.
Notably, this is a considerably higher proportion than that
reported in other sub-Saharan nations [40, 41], but likely
reflects our cohort’s more advanced disease.

Study limitations

The study represented individuals selected for research
purposes according to the inclusion and exclusion
criteria which would limit the generalizability to a popu-
lation with similar characteristics. Among these criteria
was the inclusion of mostly newly diagnosed TB
patients. Patients with recurrent episodes of TB may ex-
perience a different set of risk factors based on their pre-
vious knowledge of TB disease and encounters with the
health system. Patients with recurrent TB constituted
less than 1 % of our study sample. Sensitivity analyses
revealed that our results did not change by excluding
these patients; however, future studies should further as-
sess what impact recurrent TB has on our understanding
of distance on treatment delay. Furthermore, the study
enrolled patients within Kawempe and contiguous coun-
ties in a 20 km radius; this may also limit generalizability
to similarly urban and congested areas.

We used the earliest and most recent number of days
since the start of a list of symptoms to calculate the
appraisal delay interval. Ostensibly recall bias may have
played a role. This bias is further complicated by simi-
larly presenting infectious diseases endemic in this
region. To minimize the bias, patients were interviewed
by trained and experienced medical doctors who corre-
lated the presenting signs and symptoms with the pa-
tient’s disease progression. Furthermore, the derived
appraisal delay interval may be biased upwards, as some
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patients may have sought care from other providers
before their arrival at the NTLP clinic. Unfortunately,
we do not have data on whether or when subjects visited
other health care providers in relation to their symptom
reports. However, because very few of our index cases
were previously treated for TB, it is possible that any
prior treatment-seeking behaviors may not have been a
result of the patient’s awareness of their TB status.

Conclusion

Our study finds that geographic distance was associated
with delay. Of the four geographic distance measures,
network travel driving time was a better and more
robust predictor of mean delay in this setting. We find
that increasing network travel driving time increases the
number of days’ delay. Other important contributors to
delay include patient age and disease progression. We
conclude that, in addition to the use of traditional risk
factors, TB control programs should consider network
travel time in identifying vulnerable populations, with
the caveat that increasing variability in congested areas
may make it more difficult to discern the influence of
distance on patient appraisal delay.
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