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Abstract

The quality of life for patients infected with human immunodeficiency virus (HIV-1) has been 

positively impacted by the use of antiretroviral therapy (ART). However, the benefits of ART are 

usually halted by the emergence of drug resistance. Drug-resistant strains arise from virus 

mutations, as HIV-1 reverse transcription is prone to errors, with mutations normally carrying 

fitness costs to the virus. When ART is interrupted, the wild-type drug-sensitive strain rapidly out-

competes the resistant strain, as the former strain is fitter than the latter in the absence of ART. 

One mechanism for sustaining the sensitive strain during ART is given by the virus mutating from 

resistant to sensitive strains, which is referred to as backward mutation. This is important during 

periods of treatment interruptions as prior existence of the sensitive strain would lead to 

replacement of the resistant strain.

In order to assess the role of backward mutations in the dynamics of HIV-1 within an infected 

host, we analyze a mathematical model of two interacting virus strains in either absence or 

presence of ART. We study the effect of backward mutations on the definition of the basic 

reproductive number, and the value and stability of equilibrium points. The analysis of the model 

shows that, thanks to both forward and backward mutations, sensitive and resistant strains co-exist. 

In addition, conditions for the dominance of a viral strain with or without ART are provided. For 

this model, backward mutations are shown to be necessary for the persistence of the sensitive 

strain during ART.
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1 Introduction

The Acquired Immune Deficiency Syndrome (AIDS) is one of the leading causes of death in 

Sub-Saharan Africa. A total of 22.4 million people in this region are estimated to be infected 

with Human Immunodeficiency Virus type one (HIV-1), the pathogen that causes AIDS. 

This total accounts for 67% of HIV-1 infections in the entire world (UNAIDS, 2009). 

Antiretroviral therapy (ART) against HIV-1, first introduced in 1987, showed initial 

promising results (Larder et al, 1989). However, the emergence of drug resistance forced the 

implementation of combinational therapy (Eron et al, 1995). Drug resistance is defined as 

the ability of the virus to replicate in the presence of drugs (Larder et al, 1989). Despite the 

fact that combinational therapy is effective during the first six to eighteen months, such 

benefits might be short-lived, particularly in patients without perfect adherence (Howard et 

al, 2002; Kane, 2008; Kuritzkes, 2004; Paterson et al, 2000; Wainberg and Friedland, 1998). 

Drug resistance was found to be mainly due to incomplete viral suppression rather than 

transmission of resistant strains (Deeks, 2003). Emergence of HIV-1 drug resistance 

represents a major challenge to the long term administration of effective ART (Burkle, 2002; 

Eron et al, 1995).

The high mutation rate of HIV-1 generates a background of resistance-associated mutations 

within a patient because the viral enzyme reverse transcriptase is error-prone and HIV-1 has 

no proof-reading mechanism (Mansky and Temin, 1995). Such a high mutation rate allows 

for virtually all possible mutations to be generated daily (Perelson et al, 1997). Mutations 

could either confer drug resistance, forward mutations, or revert a resistant strain back to a 

drug-sensitive wild-type strain, backward mutations (Hecht and Grant, 2005). Some of these 

mutations are beneficial to HIV-1 as they result in the virus being able to escape the effects 

of ART or the immune system, while others are harmful to the virus as they interfere with its 

replication. Therefore, among a highly diverse viral population, it is likely to find at least 

one strain harboring a particular mutation that confers a survival advantage in the presence 

of drug pressure.

Strains carrying mutations conferring drug resistance are generally less fit (in terms of 

infectivity and/or replication) than sensitive strains and they are easily out-competed by 

them (Ribeiro and Bonhoeffer, 2000; Vaidya et al, 2010). Frost et al (2000) found the 

resistance-conferring mutation M184V in the transcriptase inhibitor lamivudine (3TC) to 

reduce viral susceptibility to drugs by approximately 100-fold. This mutation also results in 

a lower processivity of the viral enzyme reverse transcriptase. Frost et al (2000) estimated 

that the relative fitness of the mutant M184V in the presence of drug pressure is 

approximately 10% of that of the sensitive strain prior to therapy. Despite the fact that 

resistant strains are significantly less fit than sensitive strains and are heavily selected against 

in the absence of drug pressure, it is expected that on average one cell is infected with 

resistant virus in an infected cell population the size of the reciprocal of the forward 

mutation rate (Bonhoeffer and Nowak, 1997). This means that drug-resistant strains may 

exist even in the absence of treatment. On the other hand, during ART the resistant strain 

could have better relative fitness, which has been shown to increase with drug concentration 

(Gonzalez et al, 2000; Kepler and Perelson, 1998; Weber et al, 2003).
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Several studies have shown the effect of backward mutations on HIV-1 infected patients. For 

instance, for individuals originally infected with resistant mutants, replacement by emerging 

sensitive strains may take a few months, depending on class-specific mutations (Jain et al, 

2011). On the other hand, cessation of ART leads to overgrowth of sensitive virus within 16 

weeks in individuals who acquired resistant mutants during ART (Deeks et al, 2001). The 

rapid replacement of resistant virus during interruption of ART was mainly attributed to the 

resistance-associated fitness cost (Vaidya et al, 2010).

Mathematical models have been proposed to study the problem of emergence of drug 

resistance for both monotherapy and combinational therapy. From such modeling work, 

several insights about HIV-1 have been gained. McLean and Nowak (1992) showed that 

competition for target cells between the sensitive and resistant virus is an important 

determinant of which type of virus eventually emerges during the course of monotherapy 

treatment. Such a competition will largely depend on the effectiveness of the treatment 

administered and the fitness disadvantage incurred as a result of having a drug-resistance 

mutation. Kepler and Perelson (1998) showed that the range of drug concentrations that 

favors the dominance of the resistant strain is widened if spatial heterogeneity within the 

host is accounted for (because of non-uniform drug concentrations throughout the body), 

compared to a very narrow range from a single compartment assumption. Rong et al (2007) 

derived expressions specifying conditions under which the resistant strain is selected, and 

dominate the virus population in the presence of drug pressure (in the absence of backward 

mutations). Importantly, they showed that even with the coexistence of both sensitive and 

resistant strains before treatment, the resistant variants are very low in number in 

comparison to the sensitive ones and drug resistance is much more likely to arise for 

intermediate levels of treatment effectiveness. Vaidya et al (2010) analyzed the drug 

resistance dynamics during treatment interruptions assuming both forward and backward 

mutations. They showed that loss of resistant virus during (fusion inhibitor) treatment 

interruption was mainly the result of the resistance-associated fitness cost.

Despite the relevant implications that backward mutations have on the virus dynamics, there 

has not been a systematic study of their effect in a mathematical modeling approach. In 

order to evaluate the role played by backward mutations, we analyzed a mathematical model 

for the within-host dynamics of HIV-1. Such a model is defined as an extension of the one in 

Rong et al (2007) so that it includes backward mutation. We then analyzed the impact of the 

backward mutation rate on the basic reproductive number of the model, its effect on the 

existence and stability of infection-free and endemic equilibria, and its role in the emergence 

of a dominant sensitive strain during periods of ART interruptions.

2 Two-strain model in the absence of ART

2.1 Model definition

The dynamics of two interacting strains (sensitive and resistant to ART) of HIV-1 within an 

infected host are studied with a mathematical model based on the classical framework for 

within-host HIV-1 dynamics as in Nowak et al (1997) and Perelson et al (1996). It explicitly 

includes five compartments, namely: target CD4+ T-cells, CD4+ T-cells infected with 

sensitive virus Is, CD4+ T-cells infected with resistant virus Ir, sensitive virus Vs, and 
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resistant virus Vr. We make the assumption that target cells are produced at a constant rate λ 
and die at a natural death rate γ. Within the plasma, free HIV-1 interacts with target CD4+ T-

cells leading to infection under the assumption of uniform mixing of CD4+ T-cells and 

HIV-1. Target cells can be infected by either sensitive virus Vs at a rate β or resistant virus 

Vr at a rate k1β, where k1 ∈ [0, 1) is the relative fitness of the resistant strain in terms of 

infectivity. Infected cells (with either strain) are assumed to die at a virus-induced death rate 

δ. Free virions are produced by cells infected with either sensitive or resistant virus at rates a 
or k2a, respectively, where k2 ∈ (0, 1) represents the relative fitness of the resistant strain in 

terms of viral replication. Due to virus replication errors within infected CD4+ cells, it is 

assumed that a proportion q of cells infected with sensitive virus will produce resistant virus 

while a proportion z of cells infected with resistant virus will produce sensitive virus. The 

proportions q and z represent forward (sensitive to resistant) and backward (resistant to 

sensitive) mutations of the virus, respectively. Free virus is cleared from the blood plasma at 

a rate c. This model is similar to the one analyzed by Rong et al (2007), with the addition of 

backward mutations, and to the one used by Vaidya et al (2010) with a more general fitness 

and treatment effect. The dynamics of the two HIV-1 strains within a host are described 

graphically in Figure 1 and the corresponding equations are given in System 1.

(1)

2.2 Stationary points and stability analysis

All solutions of System 1 are uniformly bounded in a proper subset , where

(2)

(Proposition 1 in Appendix).

2.2.1 Infection-free equilibrium—In the absence of both sensitive and resistant strains 

of the virus, the dynamics of CD4+ T-cells are governed by dT/dt = λ − γT. This leads to a 

single infection-free stationary point E0 = (λ/γ, 0, 0, 0, 0).

The local stability of E0 is governed by the so-called basic reproductive number which is 

defined as the average number of secondary infected cells arising from one infected cell 

being placed into an entirely susceptible cell population (Nowak and May, 2000). We 

employ the systematic method introduced by van den Driessche and Watmough (2002) to 

compute the basic reproductive number for System 1. To do this, the next generation matrix 

is computed by consideration of the expected numbers of secondary infections due to a 

single primary infection in a fully susceptible population, calculated on a class-by-class 

basis. In the absence of infection, the number of susceptible CD4+ T-cells are λ/γ. A cell 
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infected with a sensitive strain will be responsible for (1 − q)βλ/γc secondary infections by 

sensitive virus and zk1βλ/γc secondary infections by resistant virus. A cell infected with a 

resistant strain will be responsible for qβλ/γc secondary infections by sensitive virus and (1 

− z)k1βλ/γc secondary infections by resistant virus. A sensitive virus will be responsible for 

an average of a/δ secondary infections while a resistant virus will be responsible for an 

average of k2a/δ secondary infections. Susceptible cells T are not responsible for any 

number of secondary infections. We therefore derive the following next generation matrix 

for System 1:

The spectral radius (largest eigenvalue) of this matrix defines the reproductive number for 

System 1. Since the matrix entries are all positive, one of the eigenvalues is simple and 

positive. For easier biological interpretation, we define our basic reproductive number as the 

square of the spectral radius of the above matrix:

(3)

One can recover previous (known) expressions of the basic reproductive number for models 

used elsewhere. For instance, when z = 0, i.e, when there are no backward mutations, we 

obtain the R0 given in Rong et al (2007):

Likewise, when there are no forward mutations either (i.e., q = z = 0), and therefore no 

acquired resistance, the basic reproductive number is then

which corresponds to the basic reproductive number for a model of viral dynamics without 

resistance, as in Perelson et al (1996) and Nowak et al (1997).

Following Theorem 2 in van den Driessche and Watmough (2002), it is shown that the 

infection-free steady-state E0 is locally asymptotically stable whenever R0 < 1, while it is 

unstable otherwise. Moreover, using Theorem 1 from Castillo-Chávez et al (2002) we can 

show that E0 is in fact globally asymptotically stable provided R0 < 1 (Theorem 1 in 

Appendix).
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2.2.2 Endemic state—As R0 increases above 1, the infection-free stationary point loses 

its stability and a unique endemic steady-state in Ω emerges (Theorem 2 in Appendix). This 

is shown graphically as a bifurcation diagram in Figure 2. This unique endemic equilibrium 

 is given by

where  is the basic reproductive number for the model with no mutation as given above.

It can be shown that E1 is locally asymptotically stable whenever R0 > 1 (Theorem 3 in 

Appendix). Numerical simulations (using a Latin Hypercube design to sample over the 

parameter space and the set of initial conditions) suggest that the endemic equilibrium E1 is 

globally asymptotically stable whenever R0 > 1.

2.3 Effect of mutations on viral dynamics

The above findings imply that as long as R0 > 1, coexistence of sensitive and resistant strains 

is guaranteed. Because of fitness cost on cell infection and viral replication, the drug 

resistant strain is usually out-competed by the sensitive strain in terms of population 

abundance. This sensitive strain’s dominance is shown to hold in the steady-state whenever

(4)

(Theorem 5 in Appendix). From Inequality 4, the dominance of the sensitive strain only 

depends on forward and backward mutation rates, and the relative fitness in both infectivity 

and productivity of the resistant virus. The dominance of sensitive strain is favored by a less 

fit resistant strain (small values of k1 and k2) and a higher backward mutation rate z. Figure 

3a provides an analysis of Inequality 4. In Figure 3a, the RHS of Inequality (Theorem 5 in 

Appendix). From Inequality 4, the dominance of the sensitive strain only depends on 

forward and backward mutation rates, and the relative fitness in both infectivity and 

productivity of the resistant virus. The dominance of sensitive strain is favored by a less fit 

resistant strain (small values of k1 and k2) and a higher backward mutation rate z. Figure 3a 

provides an analysis of Inequality 4. In Figure 3a, the RHS of Inequality 4 (in logarithmic 

scale) is drawn as a function of z/q (also in logarithmic scale) for a few values of the 

resistant strain’s relative fitness (k1 = 1, k2 = 0.9, 0.999, 1). The resulting curves are then 

compared to z/q, i.e., the LHS of Inequality 4, given by the line separating the unshaded 
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from the shaded region. Hence, the sensitive strain is dominant, i.e., Inequality 4 holds, 

whenever the curve is inside the shaded region. So, a resistant strain with a relative fitness of 

90% (k2 = 0.9) would be out-competed by the sensitive strain, while a resistant strain with a 

relative fitness as high as 99.9% (k2 = 0. 999) would require a forward mutation rate more 

than 10 times higher than the backward mutation rate (i.e., the curve corresponding to k2 = 

0.999 intersects the border between unshaded and shaded regions at around log10(z/q) = 

−1.2 in Figure 3a). When the resistant strain has no fitness cost (i.e., when k1 = k2 = 1), it is 

the balance between the forward and backward mutation rates that determine the dominant 

strain, with the backward mutation rate favoring the sensitive strain. Therefore, the sensitive 

strain will mostly out-compete the resistant strain whenever there are resistance-associated 

fitness costs.

Figure 4 shows the effect of a) forward and c) backward mutation rates on the equilibrium 

values of sensitive and resistant viral loads. As the forward mutation rate increases (and the 

backward mutation rate is kept constant), the resistant strain viral load increases (although 

still at much lower levels than the sensitive strain) while the sensitive strain viral load 

remains unchanged (Figure 4a). On the other hand, varying the backward mutation rate has 

no effect on either strain’s viral load (Figure 4c).

As shown above, the value of the basic reproductive number determines the outcome of 

infection, into either complete clearance or infection persistence. Given the fitness cost of 

the resistant strain on transmission rate and viral production, the presence of forward 

mutations makes infection persistence more difficult to achieve . On 

the other hand, whenever forward mutations are present, the presence of backward mutations 

increases the chance of infection persistence as the less-fit virus mutates back to the fitter 

one . Proofs of these statements are given in the Appendix (Theorems 6 and 7). In 

practice, the effect of mutation rates on the basic reproductive number is minimal as 

 with the length of the interval .

The above observations are consistent with an analysis of the basic reproductive number, R0, 

as a function of forward and backward mutation rates, q and z, respectively. Increasing the 

backward mutation rate z leads to an increase in the basic reproductive number R0, while 

increasing the forward mutation rate q reduces the value of R0 (Theorem 8 in Appendix).

3 Two-strain model under ART

3.1 Model definition

In this modeling approach, only two types of ART drugs are considered: reverse 

transcriptase (RT) inhibitors and protease inhibitors (PI). An RT inhibitor acts on the RT 

enzyme of the virus, suppressing transcription of viral RNA into viral DNA. This is modeled 

by decreasing the transmission rate by a factor (1 – εrt), where εrt ∈ [0,1] denotes the RT 

drug efficiency. The efficiency of the RT inhibitor is reduced by a factor p1 ∈ [0,1) for the 

resistant strain. Therefore, its transmission rate is reduced by a factor (1 – p1εrt).
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Similarly, a PI acts on the protease enzyme of the virus, leading to assembly of defective 

viral particles (which are unable to infect other target cells). In the model, this reduces the 

rate of viral production per cell by a factor (1 − εpi), where εpi ∈ [0,1] denotes the PI 

efficiency. As for the RT, the effect of the PI inhibitor on the resistant strain is reduced by a 

factor p2 ∈ [0,1), leading to a reduction factor on viral production of (1 − p2εpi). Note that 

defective particles are still produced by infected cells under a PI inhibitor and will contribute 

to overall viral load, but these are not modeled explicitly as they do not contribute to new 

infections.

(5)

The full model of viral dynamics of two strains under ART is given in System 5, which is in 

general agreement to previous models of drug therapy from literature (Perelson, 2002; Rong 

et al, 2007; Vaidya et al, 2010).

3.2 Stationary points and stability analysis

System 5 is equivalent to System 1 under the transformations β = (1 − εrt)β, a = (1 − εpi)a, 

k1 = (1 − p1εrt)/(1 − εrt)k1 and k2 = (1 − p2εpi)/(1 − εpi)k2. These transformations lead to a 

basic reproductive number given by:

(6)

where

Previous results on the stability of steady-states hold by the equivalence of Systems 1 and 5. 

Therefore, whenever , solutions of 5 will approach the infection-free steady-state 

. Indeed,  is globally asymptotically stable.

Likewise, for , there is a unique endemic equilibrium  in Ω 
given by
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obtained by applying the transformations above. Thus, it follows that  is locally 

asymptotically stable (and presumably globally stable) whenever .

3.3 Effect of mutations on viral dynamics

As ART gives the resistant strain an advantage over the sensitive strain on transmission and 

viral replication, the resistant strain will now dominate the dynamics (in the long run) for 

most parameter combinations. In fact, the sensitive strain would be dominant only if

(7)

which is harder to achieve when increasing either the drug efficacy on the sensitive strain 

(lower εs) or the drug escape by the resistant strain (larger εr) (Theorem 9 in Appendix). 

From Inequality 7, the factors determining whether or not the resistant strain will out-

compete the sensitive strain include forward and backward mutations, the relative fitness of 

the resistant virus, and the drug efficacies to either strain. Figure 3b provides an analysis of 

Inequality 7. Analogous to the case without ART (Figure 3a), the RHS of Inequality 7 is 

drawn as a function of the ratio of mutation rates (z/q) and compared to z/q (the LHS of 

Inequality 7); so that the sensitive strain is dominant whenever the curve is inside the shaded 

region (Figure 3b). For the curves given as examples, the resistant strain’s relative fitness is 

fixed to k1 = 1 and k2 = 0.9, and its drug sensitivity is taken as p1 = p2 = 0 (i.e., fully 

resistant), while the drug efficacy on the sensitive strain is varied as εrt = 0, εpi = 0, 0.1, 0.9. 

When εpi = 0, we are into the case where ART is not present and the sensitive strain is 

always dominant. As the drug efficacy increases, the inhibitory effect of the drug on the 

sensitive strain counter balances the fitness cost of the resistant strain. For instance, when εpi 

= 0.1 (for k2 = 0.9), there is a perfect balance between strains and therefore, the dominant 

strain i determined by the mutation rates (with the forward mutation rate favoring the 

resistant strain). As soon as εpi > 0.1, a greater backward mutation rate (relative to the 

forward mutation rate) is required to allow the dominance of the sensitive strain. For 

instance, for a drug efficacy of εpi = 0.9, the backward mutation rate would have to be 

around 40 times faster than the forward mutation rate.
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Figure 4 (right column) shows the effect of forward and backward mutation rates on the viral 

load of both strains. Contrary to the case where ART is not present, the backward mutation 

rate z plays a major role in the steady-state value of the sensitive strain viral load with 

approximately a 10-fold increase (decrease) in viral load for each 10-fold increase 

(decrease) in the backward mutation rate (Figure 4b). On the other hand, the forward 

mutation rate does not have any impact on either viral load (Figure 4b). The effect of 

forward and backward mutations on  is reversed in the presence of ART, that is, 

increasing the forward mutation rate q increases  while increasing the backward mutation 

rate z decreases , with the extra requirement that k1k2εr > εs (Theorem 10 in Appendix).

3.4 Role of backward mutations during treatment interruptions

As discussed above, the sensitive strain mostly dominates dynamics in the absence of ART, 

while during ART it is easier for the resistant strain to out-compete the sensitive strain. 

Simulated dynamics of System 5 for two different scenarios are shown in Figure 5. In each 

case, the simulations were run for a period of one year without ART followed by two 

treatment windows separated by a period of one month off ART. In the first scenario, it is 

assumed that the backward mutation rate is zero, z = 0 (Figure 5a), while in the second case, 

the backward mutation rate is non-zero (Figure 5b). The rest of the parameters are the same 

for both simulations. In both cases, the sensitive strain is dominant during the period without 

ART. On introduction of ART, the resistant strain becomes the dominant strain in both cases. 

However, in the absence of backward mutations, the population of the sensitive strain dies 

out and cannot re-emerge on interruption of treatment (Figure 5a). In Figure 5b, the sensitive 

strain quickly dominates dynamics on interruption of ART but is replaced by the resistant 

strain when ART is resumed. In both cases, the steady-state values remain the same after the 

treatment interruption as the interruption only acts to perturb the equilibrium value, which is 

quickly restored on resumption of ART. An increase in steady-state target cells is noted 

during ART administration (Figure 5c), which is explained by the direct effect of ART on 

the sensetive strain and the fitness cost of the resistant (see  above).

4 Discussion

We have shown that for the within-host model of two strains of HIV-1 with both forward and 

backward mutations, in either the absence or presence or ART (Systems 1 and 5, 

respectively), there is only one endemic state inside the feasible region (with coexistence of 

sensitive and resistant strains). The existence and stability of this point is determined by the 

basic reproduction number. Furthermore, numerical simulations suggest this unique endemic 

equilibrium is globally asymptotically stable. The uniqueness of the endemic equilibrium in 

the model with backward mutations contrasts with that of a two-strain model with forward 

mutations only, which has two endemic equilibria in the feasible region (Rong et al, 2007). 

One of these equilibria provides coexistence of strains, as in the model discussed here, while 

the other implies extinction of the sensitive strain. Our findings show that this latter 

equilibrium is pushed outside the feasible region when backward mutations are introduced.

Our results also include conditions necessary for a specific strain to out-compete the other 

(in terms of relative abundance, since as discussed above, both strains coexist or both die 
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out). In the absence of treatment, the condition for the dominance of the sensitive strain is 

given in terms of both mutation rates and the relative fitness of the resistant strain 

(Inequality 4). Not surprisingly, it is easier for the sensitive strain to dominate the dynamics 

because of the fitness cost of drug resistance. Although the mutation rates could theoretically 

overcome the effect of fitness cost, it would require unrealistic values for such rates. On 

introduction of ART, the condition for the dominance of the sensitive strain becomes also 

dependent on drug efficacies, so that, as the efficacies of treatment increase, it becomes 

increasingly difficult for the sensitive strain to dominate and hence the resistant strain takes 

over (Inequality 7).

For the model where ART is not present, forward mutations have the greatest effect on the 

steady-state value for the resistant strain, while backward mutations do not play any 

significant role on equilibrium values (Figure 4). Introduction of treatment swaps the roles 

of forward and backward mutations, with changes in forward mutations being insignificant 

on steady-state values and changes in backward mutations having the greatest effect on the 

sensitive strain (Figure 4). The above results are expected, as in each case either mutation 

favors the strain that is less fit for that specific environment (absence or presence of ART). A 

similar pattern is observed for the basic reproductive number. In the absence of ART, the 

basic reproductive number increases as the backward mutation rate increases, while it 

decreases as the forward mutation rate increases. This relationship is reversed in the 

presence of ART, with the basic reproductive number decreasing with an increase in the 

backward mutation rate and increasing with an increase in the forward mutation rate.

Vaidya et al (2010) showed that the rapid replacement of resistant virus during therapy 

interruptions is mainly due to the resistance-associated fitness loss rather than backward 

mutations. However, as shown in Figure 5, backward mutations are essential to the eventual 

emergence of the sensitive strain as they provide a mechanism for the persistence of the 

sensitive strain within a host during ART. On interruption of ART, the prior existence of a 

fitter sensitive strain within a host leads to a swift emergence of the sensitive virus as the 

dominant strain. Nonetheless, this may not be the only mechanism for persistence of the 

sensitive strain during ART. For instance, it has been shown that long-lived latently infected 

cells are the main contributor for a slowdown of virus decay during treatment (Perelson et al, 

1997), which may help a less fit virus strain to survive until the environment changes (e.g., 

treatment interruptions). Similarly, the variability of drug efficacies in different tissues 

(Boffito et al, 2005) may provide a reservoir for the sensitive strain, which would allow it to 

survive during ART and re-emerge when treatment is suspended.

There are several limitations to the present study. For instance, only a single resistant strain 

was considered, although many other resistant strains could be present and these may 

possess different fitness costs and mutation rates. A multi-strain model taking all this into 

consideration could be analyzed to further study the role of backward mutations. Moreover, 

it was assumed that the drug efficacies for both RT and PI were constant throughout the 

treatment period. This may not be always true since drugs are assimilated at different rates 

by the body and their distribution can vary between tissues. Compartmentalization of HIV-1 

infection, which allows for evolution of distinct HIV-1 variants in different parts of the host, 

cannot be reproduced by the present model. This present model could be extended to a 
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multi-compartment model, although detailed data on the dynamics of viral strains in each 

compartment would be required for a meaningful parameterization of the model.
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Appendix: Proofs of results

Proposition 1 Boundedness of solutions: The closed positive 5-dimensional orthant, 

defined as  is positive invariant for System 1 and there exists M > 0 

such that all solutions satisfy T(t), Is(t), Ir(t), Vs(t), Vr(t) < M for all large t.

Proof Positive invariance follows from the fact that all solutions are uniformly bounded in a 

proper subset Ω. To show that solutions of System 1 are bounded, let  be the steady-state of 

susceptible cells present before infection. In a healthy individual, the T-cell population 

dynamics are regulated by f(T) = λ − γT, where, f(T) is a smooth function and f(T) > 0 for 

. Furthermore,  with  and f(T) < 0 whenever .

From the first equation of System 1, we note that . This means that there exists a 

t0 > 0 such that  + 1 for t > t0. Let . Adding the first three equations of 

System 1, we obtain

Let A, B > 0 be such that δ(A + B) > S + 1. Then as long as

and t > t0, we have that

Clearly, there exists t1 > t0 such that

for all t > t1.

Adding the last two equations, we get

Kitayimbwa et al. Page 12

J Math Biol. Author manuscript; available in PMC 2016 June 15.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



The asymptotic bound for Is is  while that of Ir is . 

Considering the asymptotic bounds for both Is and Ir together with the differential inequality

which holds for large t, yields the asymptotic bound below;

Theorem 1 Global stability of infection-free state: The infection-free equilibrium E0 is 
globally asymptotically stable provided R0 < 1.

Proof To prove global stability of the disease free equilibrium E0, we use Theorem 1 adopted 

from Castillo-Chávez et al (2002). We can write System 1 in the form

where X = (T) and Y = (Is, Ir, Vs, Vr) with X ∈ ℝ+ and .

Taking F(X, 0) = [λ − γT],

and

Since , we have that Ĝ(X,Y) ≥ 0 for all (X, Y) ∈ Ω.

Therefore G(X, Y) = AY – Ĝ(X, Y), where Ĝ(X, Y) ≥ 0 for (X, Y) ∈ Ω, and applying 

Theorem 1 from Castillo-Chávez et al (2002), the fixed point E0 is globally asymptotically 

stable, provided, R0 < 1.
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Theorem 2 Uniqueness of endemic equilibrium: E1 is in Ω if and only if R0 > 1. 

Moreover, E1 is a unique endemic equilibrium in Ω whenever it exists.

Proof Substituting  into System 1 shows that E1 is a stationary point. 

From second and third equations of System 1, we obtain

then

as long as δ ≥ γ.

Note that, as k1k2 < 1,

Thus,

(under the assumption that 1 – q – z > 0). Multiplying by 4 and adding [(1 – q) + k1k2(1 – 

z)]2 to both sides of the inequality leads to

Therefore,

and so

Hence, multiplying by , we obtain  (and then 

). Therefore  (and ) if and only if R0 > 1, which implies E1 ∈ 
Ω iff R0 > 1
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To show that E1 is the only endemic equilibrium in Ω, assume that there is another such 

equilibrium  in Ω. Note that by solving for stationary points,  must 

be a solution of the quadratic equation

Then

(note that the other root of the above quadratic equation is T*). As for E1, , 

so if , then E2 ∉ Ω. So assume that . Thus

Since k1k2 < 1 we have

and then

This implies that

and so

Thus

This implies that  and so . Therefore E2 ∉ Ω.
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Theorem 3 Local stability of endemic equilibrium: If R0 > 1, the unique endemic 
equilibrium E1 is locally asymptotically stable.

Using the standard linearization of the model to determine the local stability of E1 is very 

laborious to track mathematically. For this reason, we employ the centre manifold theory 

(Carr, 1981) as described in Castillo-Chávez and Song (2004) to establish the local 

asymptotic stability of E1.

Making the following change of variables; T = x1, Is = x2, Ir = x3, Vs = x4 and Vr = x5. 

Therefore, we get

such that

The corresponding Jacobian matrix at the disease free equilibrium is given by

If β is taken as the bifurcation point and we consider the case when R0 = 1, then

The resultant linearized system of the transformed model with β = β* has a simple zero 

eigenvalue. This means that the centre manifold theory (Carr, 1981) can be employed to 

analyze the dynamics of the model near the bifurcation parameter value β*. The Jacobian, 

J(E0) at β* has a right eigenvector associated with the zero eigenvalue given by u = [u1, u2, 

u3, u4, u5], where
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The left eigenvector for J(E0) associated with the zero eigenvalue is given by v = [v1, v2, v3, 

v4, v5], where

We state without proof, Theorem 4 as outlined in Castillo-Chávez and Song (2004).

Theorem 4 Castillo-Chávez and Song: Consider the following general system of ordinary 
differential equations with a parameter ϕ

(8)

where 0 is the equilibrium of the system i.e, f(0, ϕ) = 0 for all ϕ and assume

A1:

 is the linearization of System 8 around the 
equilibrium 0 evaluated with ϕ = 0. Then, zero is a simple eigenvalue of A and 
other eigenvalues of A have negative real parts.

A2: Matrix A has a right eigenvector u and a left eigenvector v corresponding to the 
zero eigenvalue.

Let fk be the kth component of f and

The local dynamics of 8 are completely governed by â and  as follows:
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(i) â > 0, . When ϕ < 0 with |ϕ| << 1, 0 is locally asymptotically stable and 
there exists a positive unstable equilibrium; when 0 < ϕ << 1, 0 is unstable and 
there exists a negative and locally asymptotically stable equilibrium.

(ii) â < 0, . When ϕ < 0 with |ϕ| << 1, 0 is unstable; when 0 < ϕ << 1, 0 is 
locally asymptotically stable and there exists a positive unstable equilibrium.

(iii) â > 0, . When ϕ < 0 with |ϕ| << 1, 0 is unstable and there exists a locally 
asymptotically stable negative equilibrium; when 0 < ϕ << 1, 0 is stable and a 
positive unstable equilibrium appears.

(iv) â < 0, . When ϕ changes from negative to positive, 0 changes its stability 
from stable to unstable. Correspondingly, a negative unstable equilibrium 
becomes positive and locally asymptotically stable.

4.0.1 Computation of â and 

For System 1, the associated nonzero partial derivatives of F at the disease free equilibrium 

E0 are given by

Therefore, it follows that

(9)

where

It is observed that

for all possible parameter values. Assume that , then, substituting for 

the value of β*, gives
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This simplifies to

which is clearly not possible. Therefore,  is always positive.

We note that â > 0 provided  and 

Substituting for the value of β*, we get that â > 0 whenever;

and

This means that

where  This is clearly not possible. 

Therefore â < 0.

The value of the parameter b is associated with following non-vanishing partial derivatives 

of F,

Therefore, it follows that

(10)

Since , in order to show that , it is enough to show that 

. If we assume that , then

This reduces to
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which is not possible since q, z << 1. Therefore .

Thus â < 0 and  and from Theorem 4 item(iv), if R0 > 1, the unique endemic equilibrium 

E1 is locally asymptotically stable.

Theorem 5 Sensitive strain dominance: The sensitive strain is dominant at endemic 

equilibrium E1  whenever

Proof The sensitive strain will dominate dynamics when  This happens when

Substituting for  and  and simplifying, we get

Therefore, for the sensitive strain to be dominant, it is required that

Theorem 6 Effect of forward mutations on R0: Given positive forward mutations, q > 0, 

and positive fitness cost of resistant strain, k1, k2 < 1, we have .

Proof It is enough to show that

When q = z = 0 and k1 = k2 = 1, we have

and . This is the case when we have no drug resistance but a single sensitive strain. 

Let q ≠ 0, z ≠ 0 and k1, k2 ∈ (0,1), and suppose that
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This means that

(11)

Since k1, k2 ∈ (0,1), q ≠ 0, z ≠ 0 and q, z << 1, then 0 < k1k2(1 – z) + (1 – q) < 2. Squaring 

both sides of (4), we get

On simplification,

Collecting like terms,

which is a contradiction since k1k2(1 – z) – 1 < 0. Therefore,

Theorem 7 Effect of backward mutations on R0: Whenever q > 0 and k1, k2 < 1, the 
presence of backward mutations z > 0 increases the basic reproductive number 

Proof: We need to show that

which is equivalent to

We proceed by assuming the opposite, i.e.,
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then, squaring both sides

which reduces to

or equivalently,

which contradicts our assumptions.

Theorem 8 Rate of change of R0 with respect to mutations: Given R0 as described in 3,

Proof

and

 iff

Since the term inside the square root is positive (k1, k2 ∈ (0, 1) and q, z << 1), it is enough to 

show that

This reduces to
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which is satisfied in our region of interest, i.e., when k1, k2 ∈ (0,1).

Similarly,  iff

It is enough to show that

which reduces to

which is satisfied in our region of interest, i.e., when k1, k2 ∈ (0,1). Therefore,

Theorem 9 Sensitive strain dominance during ART: The sensitive strain dominates 
dynamics at the endemic equilibrium during treatment if

Proof The proof follows same argument as for Theorem 5.

Theorem 10 Rate of change of R0 with respect to mutations during ART: Given  as 
described in 6,

whenever k1k2εr > εs.

Proof
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and

 iff

Since the term inside the square root is positive (k1, k2 ∈ (0,1) and q, z << 1), it is enough to 

show that

This reduces to

which is satisfied depending on the parameters k1 and k2 and the treatment parameters p1, 

p2, εrt and εpi.

Similarly,  iff

It is enough to show that

which reduces to

which is satisfied depending on the parameters k1 and k2 and the treatment parameters p1, 

p2, εrt and εpi. Therefore,
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whenever k1k2εr > εs.
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Fig. 1. 
Schematic diagram showing infection dynamics of System 1. CD4+ T-cells are classified 

into uninfected T, and infected with ART-sensitive or ART-resistant virus, Is and Ir, 

respectively. Virus strains are either sensitive, Vs, or resistant, Vr, to ART. See text for 

details.
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Fig. 2. 
A bifurcation diagram for System 1. Number of infected cells for equilibrium points E0 and 

E1 are shown according to their stability status (solid curve when stable, dashed curve when 

unstable). At R0 = 1 there is a transcritical bifurcation on the number of infected cells. 

Parameter estimates as listed in Table ??
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Fig. 3. 
Analysis of the sensitive strain dominance. Solid curves show the RHS of inequalities a) 4 

and b) 7, corresponding to absence or presence of ART, respectively. The sensitive strain is 

dominant whenever the curve is inside the shaded region. a) Without ART, a few values for 

fitness cost of resistance are considered (k1 = 1, k2 = 1, 0.999, 0.9). b) With ART, a few 

values for drug efficacy are considered (k1 = 1, k2 = 0.9, p1 = p2 = 0, εrt = 0, εpi = 0, 0.1, 

0.9). The rest of the parameter estimates are fixed to the values in Table 1. All measurements 

are in logarithmic scale
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Fig. 4. 
Equilibrium viral loads for sensitive (solid) and resistant (dashed) strains as forward or 

backward mutation rates are varied. Left panel: In the absence of ART, a) varying forward 

mutation rate, q, and c) varying backward mutation rate, z. Right panel: In the presence of 

ART, b) varying forward mutation rate, q, and d) varying backward mutation rate, z. Only 

one mutation rate is varied at a time while the other is fixed to its baseline value in Table 1. 

Values used for drug efficacy parameters: εrt = 0.8, εpi = 0.75, p1 = 0.1, and p2 = 0.1
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Fig. 5. 
Infection dynamics within the host in the presence or absence of ART. The bold line on the 

x-axis shows the periods when ART is administered: ART is present from year 1 after 

infection to year 3, followed by an interruption of 1 month, after which ART is present until 

the end of the simulations. Dynamics of sensitive (solid) and resistant (dashed) strains for 

the model a) without backward mutations (z = 0) b) with backward mutations (z = 1.73 × 

10−5). c) Dynamics of uninfected CD4+ T-cells for the model with backward mutations. 

Values used for drug efficacy parameters: εrt = 0.8, εpi = 0.75, p1 = 0.1, and p2 = 0.1. The 

rest of the parameters are fixed to values in Table 1
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Table 1

Parameter values used in simulations

Parameter Definition Value/Range Reference

T0 Initial target cell count 106 cells/ml Buckley and Gluckman (2002)

γ Death rate of target cells 0.01 d−1 Mohri et al (1998)

λ Recruitment rate of target cells 104 cells/ml d-1 Defined as T0/γ

β Infection rate of target cells by Vs 2.4 × 10−8 ml d−1 Perelson et al (1993)

k1 Relative fitness of Vr infectivity 5/6 kr/ks in Rong et al (2007)

δ Death rate of infected cells 1.0 d−1 Markowitz et al (2003)

a Rate of virus production 3000 (cells/ml)−1d−1 δNs in Rong et al (2007)

k2 Relative fitness of Vr replication 2/3 Nr/Ns in Rong et al (2007)

c Clearance rate of free virus 23 d−1 Ramratnam et al (1999)

q Forward mutation rate 2.24 × 10−5 Vaidya et al (2010)

z Backward mutation rate 1.73 × 10−5 Vaidya et al (2010)

εrt RT drug efficacy (0, 1) Varied

εpi PI drug efficacy (0, 1) Varied

P1 Relative RT efficacy for Vr (0, 1) Varied

P2 Relative PI efficacy for Vr (0, 1) Varied
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